A novel hydroxyapatite ceramic bone substitute transformed by ostrich cancellous bone: Characterization and evaluations of bone regeneration activity
Various biomaterials have been used for bone repair and reconstruction of bone defects. Inorganic xenogenic bone substitutes have been intensively studied because they possesses favorable regenerative properties. The purpose of this study was to evaluate the properties of a novel inorganic xenogenic...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2011-08, Vol.98B (2), p.217-222 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various biomaterials have been used for bone repair and reconstruction of bone defects. Inorganic xenogenic bone substitutes have been intensively studied because they possesses favorable regenerative properties. The purpose of this study was to evaluate the properties of a novel inorganic xenogenic bone substitute, sintered ostrich cancellous bone (SOCB). Bone regeneration capability was also comparing to that of other bone substitutes in rabbit calvarial defects. Biochemical and biomechanical properties of the SOCB ceramic closely resembled those of human bone. Bone regeneration was evaluated by radiograph, histology, and histomorphometry. Bone regeneration was significantly enhanced in defects treated with SOCB when compared with other bone substitutes. The biochemical and biomechanical properties of SOCB are favorable for bone regeneration. SOCB might be a promising biomaterial for the repair of bone defects. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011. |
---|---|
ISSN: | 1552-4973 1552-4981 1552-4981 |
DOI: | 10.1002/jbm.b.31783 |