A DEPFET Based Beam Telescope With Submicron Precision Capability
For the detection of secondary vertices of long lived particles containing bottom and charm quarks at the International Linear Collider (ILC), a DEPFET pixel detector is one of the technologically favored options. In a DEPFET sensor a MOSFET pixel detector is integrated on a sidewards depleted silic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2008-02, Vol.55 (1), p.662-666 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the detection of secondary vertices of long lived particles containing bottom and charm quarks at the International Linear Collider (ILC), a DEPFET pixel detector is one of the technologically favored options. In a DEPFET sensor a MOSFET pixel detector is integrated on a sidewards depleted silicon bulk sensor, thus combining the advantages of a fully depleted silicon sensor with in-pixel amplification. DEPFET pixel matrices have been characterized in a high energy particle beam. Since the DEPFET is a very high precision device, given its large S/N (> 100) and small pixel size (36 × 22 ¿m 2 ), a DEPFET based pixel telescope consisting of 5 DEPFETs has been developed. The uncertainty on the predicted position for a device under test (DUT) positioned inside the telescope was found to be 1.4 ¿m with the existing device, due to the limited performance of two of the five DEPFET planes. A DEPFET telescope built of 5 modules equivalent to the best plane presented here, would have a track extrapolation error as low as 0.65 ¿m at the DUT plane. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2007.914031 |