Image Thresholding Using Graph Cuts
A novel thresholding algorithm is presented in this paper to improve image segmentation performance at a low computational cost. The proposed algorithm uses a normalized graph-cut measure as thresholding principle to distinguish an object from the background. The weight matrices used in evaluating t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2008-09, Vol.38 (5), p.1181-1195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel thresholding algorithm is presented in this paper to improve image segmentation performance at a low computational cost. The proposed algorithm uses a normalized graph-cut measure as thresholding principle to distinguish an object from the background. The weight matrices used in evaluating the graph cuts are based on the gray levels of the image, rather than the commonly used image pixels. For most images, the number of gray levels is much smaller than the number of pixels. Therefore, the proposed algorithm requires much smaller storage space and lower computational complexity than other image segmentation algorithms based on graph cuts. This fact makes the proposed algorithm attractive in various real-time vision applications such as automatic target recognition. Several examples are presented, assessing the superior performance of the proposed thresholding algorithm compared with the existing ones. Numerical results also show that the normalized-cut measure is a better thresholding principle compared with other graph-cut measures, such as average-cut and average-association ones. |
---|---|
ISSN: | 1083-4427 2168-2216 1558-2426 2168-2232 |
DOI: | 10.1109/TSMCA.2008.2001068 |