Scalable Nonlinear FET Model Based on a Distributed Parasitic Network Description

Electron device modeling requires accurate descriptions of parasitic passive structures connecting the intrinsic electron device to the external world. In conventional approaches, the parasitic phenomena are described by a network of lumped elements. As an alternative, a distributed description can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2008-04, Vol.56 (4), p.755-766
Hauptverfasser: Resca, D., Santarelli, A., Raffo, A., Cignani, R., Vannini, G., Filicori, F., Schreurs, D.M.M.-R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron device modeling requires accurate descriptions of parasitic passive structures connecting the intrinsic electron device to the external world. In conventional approaches, the parasitic phenomena are described by a network of lumped elements. As an alternative, a distributed description can be conveniently adopted. This choice has been proven very appropriate when dealing with device scaling and very high operating frequencies. In this paper, a novel approach to distributed parasitic modeling is adopted for the very first time in association with a nonlinear electron device model. In particular, it is shown how an equivalent intrinsic device and a suitably defined distributed parasitic network can be accurately defined and modeled on the basis of standard measurements and easy electromagnetic simulations. Wide experimental validation based on GaAs pseudomorphic HEMTs is provided, showing accurate prediction capabilities both under small- and large-signal conditions. The proposed model is shown to perform optimally even after periphery scaling.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2008.918153