On 1-Sarvate–Beam designs
The solution to a set theory exercise, “Partition the set of positive integers { 1 , 2 , … , v } into k subsets such that the sum of the elements in each subset is v ( v + 1 ) / ( 2 k ) whenever v ( v + 1 ) / ( 2 k ) is an integer”, gives a construction of non-simple 1-SB designs. This raises a natu...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2011-06, Vol.311 (10), p.856-865 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solution to a set theory exercise, “Partition the set of positive integers
{
1
,
2
,
…
,
v
}
into
k
subsets such that the sum of the elements in each subset is
v
(
v
+
1
)
/
(
2
k
)
whenever
v
(
v
+
1
)
/
(
2
k
)
is an integer”, gives a construction of non-simple 1-SB designs. This raises a natural question of the existence of simple 1-SB designs. We show that the necessary conditions for the existence of simple 1-SB designs for block sizes 2, 3, 4, 5 and 6 are sufficient. Moreover, the technique exhibited in the proof can be applied to block sizes greater than
k
=
6
. We also show that simple
t
-
SB
(
v
,
t
+
1
)
,
2
-
SB
(
v
,
3
)
and
2
-
SB
(
v
,
4
)
designs do not exist for any positive integers
v
and
t
.
A natural question, “Can we obtain a construction for simple 1-SB designs similar to Billington’s classical construction of simple 1-designs for any block size
k
?”, remains open. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.02.004 |