Automatic Cluster Detection in Kohonen's SOM

Kohonen's self-organizing map (SOM) is a popular neural network architecture for solving problems in the field of explorative data analysis, clustering, and data visualization. One of the major drawbacks of the SOM algorithm is the difficulty for nonexpert users to interpret the information con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2008-03, Vol.19 (3), p.442-459
Hauptverfasser: Brugger, D., Bogdan, M., Rosenstiel, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kohonen's self-organizing map (SOM) is a popular neural network architecture for solving problems in the field of explorative data analysis, clustering, and data visualization. One of the major drawbacks of the SOM algorithm is the difficulty for nonexpert users to interpret the information contained in a trained SOM. In this paper, this problem is addressed by introducing an enhanced version of the Clusot algorithm. This algorithm consists of two main steps: 1) the computation of the Clusot surface utilizing the information contained in a trained SOM and 2) the automatic detection of clusters in this surface. In the Clusot surface, clusters present in the underlying SOM are indicated by the local maxima of the surface. For SOMs with 2-D topology, the Clusot surface can, therefore, be considered as a convenient visualization technique. Yet, the presented approach is not restricted to a certain type of 2-D SOM topology and it is also applicable for SOMs having an n-dimensional grid topology.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2007.909556