Tunable High-Q N-Path Band-Pass Filters: Modeling and Verification
A differential single-port switched-RC N-path filter with band-pass characteristic is proposed. The switching frequency defines the center frequency, while the RC-time and duty cycle of the clock define the bandwidth. This allows for high-Q highly tunable filters which can for instance be useful for...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2011-05, Vol.46 (5), p.998-1010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A differential single-port switched-RC N-path filter with band-pass characteristic is proposed. The switching frequency defines the center frequency, while the RC-time and duty cycle of the clock define the bandwidth. This allows for high-Q highly tunable filters which can for instance be useful for cognitive radio. Using a linear periodically time-variant (LPTV) model, exact expressions for the filter transfer function are derived. The behavior of the circuit including non-idealities such as maximum rejection, spectral aliasing, noise and effects due to mismatch in the paths is modeled and verified via measurements. A simple RLC equivalent circuit is provided, modeling bandwidth, quality factor and insertion loss of the filter. A 4-path architecture is realized in 65 nm CMOS. An off-chip transformer acts as a balun, improves filter-Q and realizes impedance matching. The differential architecture reduces clock-leakage and suppresses selectivity around even harmonics of the clock. The filter has a constant -3 dB bandwidth of 35 MHz and can be tuned from 100 MHz up to 1 GHz. Over the whole band, IIP3 is better than 14 dBm, P 1dB =2 dBm and the noise figure is 3-5 dB, while the power dissipation increases from 2 mW to 16 mW (only clocking power). |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2011.2117010 |