Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations

The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2009-10, Vol.3 (5), p.874-888
Hauptverfasser: Huerta, J.M., Vidal, J., Giremus, A., Tourneret, J.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 5
container_start_page 874
container_title IEEE journal of selected topics in signal processing
container_volume 3
creator Huerta, J.M.
Vidal, J.
Giremus, A.
Tourneret, J.-Y.
description The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity.
doi_str_mv 10.1109/JSTSP.2009.2027804
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_875021457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5290371</ieee_id><sourcerecordid>2294843481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-7ba6178642d5a3dbbf0c5d16280518a7b34ababbb20f95cf4c0533e27864a0193</originalsourceid><addsrcrecordid>eNpdkctOwzAQRSMEEqXwA7Cx2CAWgfErTpZVRXlVUCmFreWkTuuS2sVOK_H3JLTqgs3MaHTuXI1uFF1iuMMYsvuXfJpP7ghA1hYiUmBHUQ9nDMfAUnbczZTEjHN6Gp2FsATgIsGsF32-OGMbNFG-MWWt0cjUjfZI2Rn6eB2hiQumMc6iqVfll7FzZCzK9VZ7jd6cjcfG6thVcW7miwblptmoDg_n0Uml6qAv9r0ffYwepsOnePz--DwcjOOSCWhiUagEizRhZMYVnRVFBSWf4YSkwHGqREGZKlRRFASqjJcVK4FTqkknUdD-1I9ud3cXqpZrb1bK_0injHwajGW3A2AAgtItbtmbHbv27nujQyNXJpS6rpXVbhNkKjgQzLhoyet_5NJtvG0fkSkXjCSCdtZkB5XeheB1dfDHILtQ5F8osgtF7kNpRVc7kdFaHwScZEAFpr-3JIYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857426739</pqid></control><display><type>article</type><title>Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations</title><source>IEEE Electronic Library (IEL)</source><creator>Huerta, J.M. ; Vidal, J. ; Giremus, A. ; Tourneret, J.-Y.</creator><creatorcontrib>Huerta, J.M. ; Vidal, J. ; Giremus, A. ; Tourneret, J.-Y.</creatorcontrib><description>The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2009.2027804</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Bayesian methods ; Computer Science ; Engineering Sciences ; Estimates ; Global Positioning System ; GSM ; Localization ; Mathematical models ; Non-line-of-sight (NLOS) ; Obstacles ; particle filter ; Particle filters ; Particle measurements ; Particle tracking ; Pollution measurement ; Position (location) ; Position measurement ; Rao-Blackwellization ; Reduction ; Signal and Image Processing ; Signal processing ; Tracking ; unscented Kalman filter ; Wireless communication</subject><ispartof>IEEE journal of selected topics in signal processing, 2009-10, Vol.3 (5), p.874-888</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-7ba6178642d5a3dbbf0c5d16280518a7b34ababbb20f95cf4c0533e27864a0193</citedby><cites>FETCH-LOGICAL-c470t-7ba6178642d5a3dbbf0c5d16280518a7b34ababbb20f95cf4c0533e27864a0193</cites><orcidid>0000-0001-5219-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5290371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5290371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00400733$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huerta, J.M.</creatorcontrib><creatorcontrib>Vidal, J.</creatorcontrib><creatorcontrib>Giremus, A.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><title>Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity.</description><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Estimates</subject><subject>Global Positioning System</subject><subject>GSM</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Non-line-of-sight (NLOS)</subject><subject>Obstacles</subject><subject>particle filter</subject><subject>Particle filters</subject><subject>Particle measurements</subject><subject>Particle tracking</subject><subject>Pollution measurement</subject><subject>Position (location)</subject><subject>Position measurement</subject><subject>Rao-Blackwellization</subject><subject>Reduction</subject><subject>Signal and Image Processing</subject><subject>Signal processing</subject><subject>Tracking</subject><subject>unscented Kalman filter</subject><subject>Wireless communication</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRSMEEqXwA7Cx2CAWgfErTpZVRXlVUCmFreWkTuuS2sVOK_H3JLTqgs3MaHTuXI1uFF1iuMMYsvuXfJpP7ghA1hYiUmBHUQ9nDMfAUnbczZTEjHN6Gp2FsATgIsGsF32-OGMbNFG-MWWt0cjUjfZI2Rn6eB2hiQumMc6iqVfll7FzZCzK9VZ7jd6cjcfG6thVcW7miwblptmoDg_n0Uml6qAv9r0ffYwepsOnePz--DwcjOOSCWhiUagEizRhZMYVnRVFBSWf4YSkwHGqREGZKlRRFASqjJcVK4FTqkknUdD-1I9ud3cXqpZrb1bK_0injHwajGW3A2AAgtItbtmbHbv27nujQyNXJpS6rpXVbhNkKjgQzLhoyet_5NJtvG0fkSkXjCSCdtZkB5XeheB1dfDHILtQ5F8osgtF7kNpRVc7kdFaHwScZEAFpr-3JIYk</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Huerta, J.M.</creator><creator>Vidal, J.</creator><creator>Giremus, A.</creator><creator>Tourneret, J.-Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid></search><sort><creationdate>20091001</creationdate><title>Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations</title><author>Huerta, J.M. ; Vidal, J. ; Giremus, A. ; Tourneret, J.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-7ba6178642d5a3dbbf0c5d16280518a7b34ababbb20f95cf4c0533e27864a0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Estimates</topic><topic>Global Positioning System</topic><topic>GSM</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Non-line-of-sight (NLOS)</topic><topic>Obstacles</topic><topic>particle filter</topic><topic>Particle filters</topic><topic>Particle measurements</topic><topic>Particle tracking</topic><topic>Pollution measurement</topic><topic>Position (location)</topic><topic>Position measurement</topic><topic>Rao-Blackwellization</topic><topic>Reduction</topic><topic>Signal and Image Processing</topic><topic>Signal processing</topic><topic>Tracking</topic><topic>unscented Kalman filter</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huerta, J.M.</creatorcontrib><creatorcontrib>Vidal, J.</creatorcontrib><creatorcontrib>Giremus, A.</creatorcontrib><creatorcontrib>Tourneret, J.-Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huerta, J.M.</au><au>Vidal, J.</au><au>Giremus, A.</au><au>Tourneret, J.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>3</volume><issue>5</issue><spage>874</spage><epage>888</epage><pages>874-888</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2009.2027804</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2009-10, Vol.3 (5), p.874-888
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_miscellaneous_875021457
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Bayesian methods
Computer Science
Engineering Sciences
Estimates
Global Positioning System
GSM
Localization
Mathematical models
Non-line-of-sight (NLOS)
Obstacles
particle filter
Particle filters
Particle measurements
Particle tracking
Pollution measurement
Position (location)
Position measurement
Rao-Blackwellization
Reduction
Signal and Image Processing
Signal processing
Tracking
unscented Kalman filter
Wireless communication
title Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Particle%20Filter%20and%20UKF%20Position%20Tracking%20in%20Severe%20Non-Line-of-Sight%20Situations&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Huerta,%20J.M.&rft.date=2009-10-01&rft.volume=3&rft.issue=5&rft.spage=874&rft.epage=888&rft.pages=874-888&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2009.2027804&rft_dat=%3Cproquest_RIE%3E2294843481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857426739&rft_id=info:pmid/&rft_ieee_id=5290371&rfr_iscdi=true