Joint Particle Filter and UKF Position Tracking in Severe Non-Line-of-Sight Situations
The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2009-10, Vol.3 (5), p.874-888 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of localization techniques in a wireless communication system is severely impaired by biases induced in the range and angle measures because of the non-line-of-sight (NLOS) situation, caused by obstacles in the transmitted signal path. However, the knowledge of the line-of-sight (LOS) or NLOS situation for each measure can improve the final accuracy. This paper studies the localization of mobile terminals (MT) based on a Bayesian model for the LOS-NLOS evolution. This Bayesian model does not require having a minimum number of LOS measures at each acquisition. A tracking strategy based on a particle filter (PF) and an unscented Kalman filter (UKF) is used both to estimate the LOS-NLOS situation and the MT kinetic variables (position and speed). The approach shows a remarkable reduction in positioning error and a high degree of scalability in terms of performance versus complexity. |
---|---|
ISSN: | 1932-4553 1941-0484 |
DOI: | 10.1109/JSTSP.2009.2027804 |