Efficient Skyline Computation in Structured Peer-to-Peer Systems

An increasing number of large-scale applications exploit peer-to-peer network architecture to provide highly scalable and flexible services. Among these applications, data management in peer-to-peer systems is one of the interesting domains. In this paper, we investigate the multidimensional skyline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2009-07, Vol.21 (7), p.1059-1072
Hauptverfasser: Cui, Bin, Chen, Lijiang, Xu, Linhao, Lu, Hua, Song, Guojie, Xu, Quanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An increasing number of large-scale applications exploit peer-to-peer network architecture to provide highly scalable and flexible services. Among these applications, data management in peer-to-peer systems is one of the interesting domains. In this paper, we investigate the multidimensional skyline computation problem on a structured peer-to-peer network. In order to achieve low communication cost and quick response time, we utilize the iMinMax(\theta ) method to transform high-dimensional data to one-dimensional value and distribute the data in a structured peer-to-peer network called BATON. Thereafter, we propose a progressive algorithm with adaptive filter technique for efficient skyline computation in this environment. We further discuss some optimization techniques for the algorithm, and summarize the key principles of our algorithm into a query routing protocol with detailed analysis. Finally, we conduct an extensive experimental evaluation to demonstrate the efficiency of our approach.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2008.235