Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems

In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2011-06, Vol.21 (2), p.023126-023126-11
Hauptverfasser: Kowalczyk, P., Glendinning, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the switching surface. In the full system the slow manifold is no longer continuous, and there is an O ( ɛ ) discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system dynamics. Revealed phase space topology is used to unfold qualitative dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type is shown.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.3596708