Recovery of mitosporic fungi actively growing in soils after bacterial bioremediation of oily sludge and their potential for removing recalcitrant hydrocarbons

Bacterial bioremediation is a widely used technique to remove or neutralize contaminants. However, the enzymatic capabilities of bacteria are limited and, consequently, recalcitrant compounds remain in the soil. Fungi can help to overcome this drawback, since their enzymatic repertoire is extensive....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International biodeterioration & biodegradation 2011-07, Vol.65 (4), p.649-655
Hauptverfasser: Vasco, María F., Cepero, María C., Restrepo, Silvia, Vives-Florez, Martha J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial bioremediation is a widely used technique to remove or neutralize contaminants. However, the enzymatic capabilities of bacteria are limited and, consequently, recalcitrant compounds remain in the soil. Fungi can help to overcome this drawback, since their enzymatic repertoire is extensive. In this study, the diversity of viable, actively growing, filamentous fungi was explored in soils previously subjected to bioremediation with bacterial consortia from three petroleum exploitation fields. Diversity was estimated using both morphological traits and ITS rDNA sequencing. We recovered a highly diverse group of morphotypes from each field, most of them previously reported genera of fungi associated with bioremediation ( Aspergillus, Paecilomyces, and Penicillium), but a high proportion (40%) of the fungal species detected have never previously been reported as being involved in degradation of hydrocarbons. To build evidence of the isolates as potential bioremediation agents, their laccase and peroxidase activities were measured in vitro; peroxidase activity was a common trend in these fungi. The detection of peroxidase activity suggests adaptation of these fungi to the residual contaminants after bacterial action. Bioaugmentation of the fungal isolates in microcosms contaminated with oily sludge resulted in higher removal of the asphaltenic fraction compared to no bioaugmented microcosms. Our method allowed us to screen for and isolate viable mycelia within a contaminated environment, a strategy efficient for our environmental protection goals.
ISSN:0964-8305
1879-0208
DOI:10.1016/j.ibiod.2010.12.014