De Finetti’s optimal dividends problem with an affine penalty function at ruin
In a Lévy insurance risk model, under the assumption that the tail of the Lévy measure is log-convex, we show that either a horizontal barrier strategy or the take-the-money-and-run strategy maximizes, among all admissible strategies, the dividend payments subject to an affine penalty function at ru...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2010-02, Vol.46 (1), p.98-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a Lévy insurance risk model, under the assumption that the tail of the Lévy measure is log-convex, we show that either a horizontal barrier strategy or the take-the-money-and-run strategy maximizes, among all admissible strategies, the dividend payments subject to an affine penalty function at ruin. As a key step for the proof, we prove that, under the aforementioned condition on the jump measure, the scale function of the spectrally negative Lévy process has a log-convex derivative. |
---|---|
ISSN: | 0167-6687 1873-5959 |
DOI: | 10.1016/j.insmatheco.2009.09.006 |