Identification and characterization of another 4-nitrophenol degradation gene cluster, nps, in Rhodococcus sp. strain PN1
4-Nitrophenol (4-NP) is a toxic compound formed in soil by the hydrolysis of organophosphorous pesticides, such as parathion. We previously reported the presence of the 4-NP degradation gene cluster (nphRA1A2) in Rhodococcus sp. strain PN1, which encodes a two-component 4-NP hydroxylase system that...
Gespeichert in:
Veröffentlicht in: | Journal of bioscience and bioengineering 2011-06, Vol.111 (6), p.687-694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 4-Nitrophenol (4-NP) is a toxic compound formed in soil by the hydrolysis of organophosphorous pesticides, such as parathion. We previously reported the presence of the 4-NP degradation gene cluster (nphRA1A2) in Rhodococcus sp. strain PN1, which encodes a two-component 4-NP hydroxylase system that oxidizes 4-NP into 4-nitrocatechol. In the current study, another gene cluster (npsC and npsRA2A1B) encoding a similar 4-NP hydroxylase system was cloned from strain PN1. The enzymes from this 4-NP hydroxylase system (NpsA1 and NpsA2) were purified as histidine-tagged (His-) proteins and then characterized. His-NpsA2 showed NADH/FAD oxidoreductase activity, and His-NpsA1 showed 4-NP oxidizing activity in the presence of His-NpsA2. In the 4-NP oxidation using the reconstituted enzyme system (His-NpsA1 and His-NpsA2), hydroquinone (35% of 4-NP disappeared) and hydroxyquinol (59% of 4-NP disappeared) were detected in the presence of ascorbic acid as a reducing reagent, suggesting that, without the reducing reagent, 4-NP was converted into their oxidized forms, 1,4-benzoquinone and 2-hydroxy-1,4-benzoquinone. In addition, in the cell extract of recombinant Escherichia coli expressing npsB, a typical spectral change showing conversion of hydroxyquinol into maleylacetate was observed. These results indicate that this nps gene cluster, in addition to the nph gene cluster, is also involved in 4-NP degradation in strain PN1. |
---|---|
ISSN: | 1389-1723 1347-4421 |
DOI: | 10.1016/j.jbiosc.2011.01.016 |