Menthol diminishes Staphylococcus aureus virulence-associated extracellular proteins expression
Staphylococcus aureus is a significant human pathogen that is the major cause of a broad spectrum of illnesses, ranging from minor skin infections to life-threatening deep tissue infections and toxinosis. The ability of the organism to cause such a broad range of infections is, to a great extent, at...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2011-04, Vol.90 (2), p.705-712 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Staphylococcus aureus is a significant human pathogen that is the major cause of a broad spectrum of illnesses, ranging from minor skin infections to life-threatening deep tissue infections and toxinosis. The ability of the organism to cause such a broad range of infections is, to a great extent, attributed to the secretion of a myriad of virulence-related extracellular proteins. Therefore, virulence as a target for antimicrobial chemotherapy has gained great interest. Menthol is a monocyclic terpene alcohol that occurs naturally in plants of the Mentha species lacking anti-S. aureus activity. In this paper, we demonstrate via hemolytic activity assays, tumor necrosis factor release assays, Western blot assays, and real-time reverse transcription-PCR assays that low concentrations of menthol can markedly inhibit the expression of α-hemolysin, enterotoxins A and B, and toxic shock syndrome toxin 1 in S. aureus. Our results indicate that menthol may be useful in managing S. aureus infections when used in combination with β-lactam antibiotics, which can often increase S. aureus toxin secretion when used at subinhibitory concentrations. In addition, the menthol basic structure has potential applications in the development of new anti-virulence drugs. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-011-3122-9 |