Complexity and characteristic frequency studies in ECG signals of mice based on multiple scale factors

Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency. We developed a technique to measure the multifractal characteristic parameter intimately associated with physiological activi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2011-06, Vol.54 (6), p.544-552
Hauptverfasser: Yang, XiaoDong, He, AiJun, Liu, Peng, Sun, TongFeng, Ning, XinBao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing methods of physiological signal analysis based on nonlinear dynamic theories only examine the complexity difference of the signals under a single sampling frequency. We developed a technique to measure the multifractal characteristic parameter intimately associated with physiological activities through a frequency scale factor. This parameter is highly sensitive to physiological and pathological status. Mice received various drugs to imitate different physiological and pathological conditions, and the distributions of mass exponent spectrum curvature with scale factors from the electrocardiogram (ECG) signals of healthy and drug injected mice were determined. Next, we determined the characteristic frequency scope in which the signal was of the highest complexity and most sensitive to impaired cardiac function, and examined the relationships between heart rate, heartbeat dynamic complexity, and sensitive frequency scope of the ECG signal. We found that all animals exhibited a scale factor range in which the absolute magnitudes of ECG mass exponent spectrum curvature achieve the maximum, and this range (or frequency scope) is not changed with calculated data points or maximal coarse-grained scale factor. Further, the heart rate of mice was not necessarily associated with the nonlinear complexity of cardiac dynamics, but closely related to the most sensitive ECG frequency scope determined by characterization of this complex dynamic features for certain heartbeat conditions. Finally, we found that the health status of the hearts of mice was directly related to the heartbeat dynamic complexity, both of which were positively correlated within the scale factor around the extremum region of the multifractal parameter. With increasing heart rate, the sensitive frequency scope increased to a relatively high location. In conclusion, these data provide important theoretical and practical data for the early diagnosis of cardiac disorders.
ISSN:1674-7305
1869-1889
DOI:10.1007/s11427-011-4173-y