Self-Exciting Point Process Modeling of Crime
Highly clustered event sequences are observed in certain types of crime data, such as burglary and gang violence, due to crime-specific patterns of criminal behavior. Similar clustering patterns are observed by seismologists, as earthquakes are well known to increase the risk of subsequent earthquak...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2011-03, Vol.106 (493), p.100-108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly clustered event sequences are observed in certain types of crime data, such as burglary and gang violence, due to crime-specific patterns of criminal behavior. Similar clustering patterns are observed by seismologists, as earthquakes are well known to increase the risk of subsequent earthquakes, or aftershocks, near the location of an initial event. Space-time clustering is modeled in seismology by selfexciting point processes and the focus of this article is to show that these methods are well suited for criminological applications. We first review self-exciting point processes in the context of seismology. Next, using residential burglary data provided by the Los Angeles Police Department, we illustrate the implementation of self-exciting point process models in the context of urban crime. For this purpose we use a fully nonparametric estimation methodology to gain insight into the form of the space-time triggering function and temporal trends in the background rate of burglary. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1198/jasa.2011.ap09546 |