Fluxgate magnetorelaxometry for characterization of hydrogel polymerization kinetics and physical entrapment capacity

Hydrogels have the potential for providing drug delivery systems with long release rates. The polymerization kinetics and the physical entrapment capacity of photo-cross-linked hydroxyethyl methacrylate hydroxyethylstarch hydrogels are investigated with a non-destructive method. For this purpose, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2008-05, Vol.20 (20), p.204106-204106 (5)
Hauptverfasser: Heim, E, Harling, S, Ludwig, F, Menzel, H, Schilling, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogels have the potential for providing drug delivery systems with long release rates. The polymerization kinetics and the physical entrapment capacity of photo-cross-linked hydroxyethyl methacrylate hydroxyethylstarch hydrogels are investigated with a non-destructive method. For this purpose, superparamagnetic nanoparticles as replacements for biomolecules are used as probes. By analyzing their magnetic relaxation behavior, the amounts of physically entrapped and mobile nanoparticles can be determined. The hydrogels were loaded with five different concentrations of nanoparticles. Different methods of analysis of the relaxation curves and the influence of the microviscosity are discussed. This investigation allows one to optimize the UV light irradiation time and to determine the amount of physically entrapped nanoparticles in the hydrogel network. It was found that the polymerization kinetics is faster for decreasing nanoparticle concentration but not all nanoparticles can be physically entrapped in the network.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/20/20/204106