Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort

This study investigated what factors radiologists take into account when estimating emphysema severity and assessed quantitative computed tomography (CT) measurements of low attenuation areas. CT scans and spirometry were obtained on 1519 chronic obstructive pulmonary disease (COPD) subjects, 269 sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2011-06, Vol.18 (6), p.661-671
Hauptverfasser: Gietema, Hester A, Müller, Nestor L, Fauerbach, Paola V Nasute, Sharma, Sanjay, Edwards, Lisa D, Camp, Pat G, Coxson, Harvey O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 6
container_start_page 661
container_title Academic radiology
container_volume 18
creator Gietema, Hester A
Müller, Nestor L
Fauerbach, Paola V Nasute
Sharma, Sanjay
Edwards, Lisa D
Camp, Pat G
Coxson, Harvey O
description This study investigated what factors radiologists take into account when estimating emphysema severity and assessed quantitative computed tomography (CT) measurements of low attenuation areas. CT scans and spirometry were obtained on 1519 chronic obstructive pulmonary disease (COPD) subjects, 269 smoker controls, and 184 nonsmoker controls from the Evaluation of COPD Longitudinally to Indentify Surrogate Endpoints (ECLIPSE) study. CT scans were analyzed using the threshold technique (%
doi_str_mv 10.1016/j.acra.2011.01.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_873494320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>873494320</sourcerecordid><originalsourceid>FETCH-LOGICAL-p210t-a4864bb0930f9071a8ea5b5b46dcd71637b2f8a5cb27af9fefda1aeba96d07fe3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdBbK3-AQ-yt54Sd_Mdb1KqFgoq6jlMsrPNliSbZjfV_Bl_q1HbgzAwMLw8w_MScsWZyxmPbrYuFB24HuPcZT_DT8iUJ3HiBCyIJuTcmC1jPIwS_4xMPO6nPvPiKfl66aGxSg6q2VBbIsVPi42lWlKs23IwWMMtlVBY3RkKxuhCgUVBP5QtaQdC6UpvlLFmTtFYVYNVuhmTjaC7X7QdL3ukqhGqQPMPTA3usVN2oL05_l8u1qvn1yUtdKk7e0FOJVQGLw97Rt7vl2-LR2f99LBa3K2d1uPMOhAkUZDnbJSSKYs5JAhhHuZBJAoR88iPc08mEBa5F4NMJUoBHDCHNBIslujPyPyP23Z6148iWa1MgVUFDereZEnsB2nge2xMXh-SfV6jyNpudO6G7Fip_w0GT3z_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873494320</pqid></control><display><type>article</type><title>Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Gietema, Hester A ; Müller, Nestor L ; Fauerbach, Paola V Nasute ; Sharma, Sanjay ; Edwards, Lisa D ; Camp, Pat G ; Coxson, Harvey O</creator><creatorcontrib>Gietema, Hester A ; Müller, Nestor L ; Fauerbach, Paola V Nasute ; Sharma, Sanjay ; Edwards, Lisa D ; Camp, Pat G ; Coxson, Harvey O ; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators</creatorcontrib><description>This study investigated what factors radiologists take into account when estimating emphysema severity and assessed quantitative computed tomography (CT) measurements of low attenuation areas. CT scans and spirometry were obtained on 1519 chronic obstructive pulmonary disease (COPD) subjects, 269 smoker controls, and 184 nonsmoker controls from the Evaluation of COPD Longitudinally to Indentify Surrogate Endpoints (ECLIPSE) study. CT scans were analyzed using the threshold technique (%&lt;-950HU) and a low attenuation cluster analysis. Two radiologists scored emphysema severity (0 to 5 scale), described the predominant type and distribution of emphysema, and the presence of suspected small airways disease. The percent low attenuation area (%LAA) and visual scores of emphysema severity correlated well (r = 0.77, P &lt; .001). %LAA, low attenuation cluster analysis, and absence of radiologist described gas trapping, distribution, and predominant type of emphysema were predictors of visual scores of emphysema severity (all P &lt; .001). CT scans scored as showing regions of gas trapping had smaller lesions for a similar %LAA than those without (P &lt; .001). Visual estimates of emphysema are not only determined by the extent of LAA, but also by lesion size, predominant type, and distribution of emphysema and presence/absence of areas of small airways disease. A computer analysis of low attenuation cluster size helps quantitative algorithms discriminate low attenuation areas from gas trapping, image noise, and emphysema.</description><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2011.01.011</identifier><identifier>PMID: 21393027</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Algorithms ; Analysis of Variance ; Biomarkers ; Case-Control Studies ; Cluster Analysis ; Disease Progression ; Female ; Forced Expiratory Volume ; Humans ; Longitudinal Studies ; Male ; Middle Aged ; Pulmonary Emphysema - diagnostic imaging ; Pulmonary Emphysema - physiopathology ; Radiographic Image Interpretation, Computer-Assisted ; Regression Analysis ; Severity of Illness Index ; Spirometry ; Tomography, X-Ray Computed</subject><ispartof>Academic radiology, 2011-06, Vol.18 (6), p.661-671</ispartof><rights>Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21393027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gietema, Hester A</creatorcontrib><creatorcontrib>Müller, Nestor L</creatorcontrib><creatorcontrib>Fauerbach, Paola V Nasute</creatorcontrib><creatorcontrib>Sharma, Sanjay</creatorcontrib><creatorcontrib>Edwards, Lisa D</creatorcontrib><creatorcontrib>Camp, Pat G</creatorcontrib><creatorcontrib>Coxson, Harvey O</creatorcontrib><creatorcontrib>Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators</creatorcontrib><title>Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>This study investigated what factors radiologists take into account when estimating emphysema severity and assessed quantitative computed tomography (CT) measurements of low attenuation areas. CT scans and spirometry were obtained on 1519 chronic obstructive pulmonary disease (COPD) subjects, 269 smoker controls, and 184 nonsmoker controls from the Evaluation of COPD Longitudinally to Indentify Surrogate Endpoints (ECLIPSE) study. CT scans were analyzed using the threshold technique (%&lt;-950HU) and a low attenuation cluster analysis. Two radiologists scored emphysema severity (0 to 5 scale), described the predominant type and distribution of emphysema, and the presence of suspected small airways disease. The percent low attenuation area (%LAA) and visual scores of emphysema severity correlated well (r = 0.77, P &lt; .001). %LAA, low attenuation cluster analysis, and absence of radiologist described gas trapping, distribution, and predominant type of emphysema were predictors of visual scores of emphysema severity (all P &lt; .001). CT scans scored as showing regions of gas trapping had smaller lesions for a similar %LAA than those without (P &lt; .001). Visual estimates of emphysema are not only determined by the extent of LAA, but also by lesion size, predominant type, and distribution of emphysema and presence/absence of areas of small airways disease. A computer analysis of low attenuation cluster size helps quantitative algorithms discriminate low attenuation areas from gas trapping, image noise, and emphysema.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Biomarkers</subject><subject>Case-Control Studies</subject><subject>Cluster Analysis</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Forced Expiratory Volume</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Pulmonary Emphysema - diagnostic imaging</subject><subject>Pulmonary Emphysema - physiopathology</subject><subject>Radiographic Image Interpretation, Computer-Assisted</subject><subject>Regression Analysis</subject><subject>Severity of Illness Index</subject><subject>Spirometry</subject><subject>Tomography, X-Ray Computed</subject><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1Lw0AQhhdBbK3-AQ-yt54Sd_Mdb1KqFgoq6jlMsrPNliSbZjfV_Bl_q1HbgzAwMLw8w_MScsWZyxmPbrYuFB24HuPcZT_DT8iUJ3HiBCyIJuTcmC1jPIwS_4xMPO6nPvPiKfl66aGxSg6q2VBbIsVPi42lWlKs23IwWMMtlVBY3RkKxuhCgUVBP5QtaQdC6UpvlLFmTtFYVYNVuhmTjaC7X7QdL3ukqhGqQPMPTA3usVN2oL05_l8u1qvn1yUtdKk7e0FOJVQGLw97Rt7vl2-LR2f99LBa3K2d1uPMOhAkUZDnbJSSKYs5JAhhHuZBJAoR88iPc08mEBa5F4NMJUoBHDCHNBIslujPyPyP23Z6148iWa1MgVUFDereZEnsB2nge2xMXh-SfV6jyNpudO6G7Fip_w0GT3z_</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Gietema, Hester A</creator><creator>Müller, Nestor L</creator><creator>Fauerbach, Paola V Nasute</creator><creator>Sharma, Sanjay</creator><creator>Edwards, Lisa D</creator><creator>Camp, Pat G</creator><creator>Coxson, Harvey O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201106</creationdate><title>Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort</title><author>Gietema, Hester A ; Müller, Nestor L ; Fauerbach, Paola V Nasute ; Sharma, Sanjay ; Edwards, Lisa D ; Camp, Pat G ; Coxson, Harvey O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p210t-a4864bb0930f9071a8ea5b5b46dcd71637b2f8a5cb27af9fefda1aeba96d07fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Biomarkers</topic><topic>Case-Control Studies</topic><topic>Cluster Analysis</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Forced Expiratory Volume</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Pulmonary Emphysema - diagnostic imaging</topic><topic>Pulmonary Emphysema - physiopathology</topic><topic>Radiographic Image Interpretation, Computer-Assisted</topic><topic>Regression Analysis</topic><topic>Severity of Illness Index</topic><topic>Spirometry</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gietema, Hester A</creatorcontrib><creatorcontrib>Müller, Nestor L</creatorcontrib><creatorcontrib>Fauerbach, Paola V Nasute</creatorcontrib><creatorcontrib>Sharma, Sanjay</creatorcontrib><creatorcontrib>Edwards, Lisa D</creatorcontrib><creatorcontrib>Camp, Pat G</creatorcontrib><creatorcontrib>Coxson, Harvey O</creatorcontrib><creatorcontrib>Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gietema, Hester A</au><au>Müller, Nestor L</au><au>Fauerbach, Paola V Nasute</au><au>Sharma, Sanjay</au><au>Edwards, Lisa D</au><au>Camp, Pat G</au><au>Coxson, Harvey O</au><aucorp>Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2011-06</date><risdate>2011</risdate><volume>18</volume><issue>6</issue><spage>661</spage><epage>671</epage><pages>661-671</pages><eissn>1878-4046</eissn><abstract>This study investigated what factors radiologists take into account when estimating emphysema severity and assessed quantitative computed tomography (CT) measurements of low attenuation areas. CT scans and spirometry were obtained on 1519 chronic obstructive pulmonary disease (COPD) subjects, 269 smoker controls, and 184 nonsmoker controls from the Evaluation of COPD Longitudinally to Indentify Surrogate Endpoints (ECLIPSE) study. CT scans were analyzed using the threshold technique (%&lt;-950HU) and a low attenuation cluster analysis. Two radiologists scored emphysema severity (0 to 5 scale), described the predominant type and distribution of emphysema, and the presence of suspected small airways disease. The percent low attenuation area (%LAA) and visual scores of emphysema severity correlated well (r = 0.77, P &lt; .001). %LAA, low attenuation cluster analysis, and absence of radiologist described gas trapping, distribution, and predominant type of emphysema were predictors of visual scores of emphysema severity (all P &lt; .001). CT scans scored as showing regions of gas trapping had smaller lesions for a similar %LAA than those without (P &lt; .001). Visual estimates of emphysema are not only determined by the extent of LAA, but also by lesion size, predominant type, and distribution of emphysema and presence/absence of areas of small airways disease. A computer analysis of low attenuation cluster size helps quantitative algorithms discriminate low attenuation areas from gas trapping, image noise, and emphysema.</abstract><cop>United States</cop><pmid>21393027</pmid><doi>10.1016/j.acra.2011.01.011</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1878-4046
ispartof Academic radiology, 2011-06, Vol.18 (6), p.661-671
issn 1878-4046
language eng
recordid cdi_proquest_miscellaneous_873494320
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Aged
Algorithms
Analysis of Variance
Biomarkers
Case-Control Studies
Cluster Analysis
Disease Progression
Female
Forced Expiratory Volume
Humans
Longitudinal Studies
Male
Middle Aged
Pulmonary Emphysema - diagnostic imaging
Pulmonary Emphysema - physiopathology
Radiographic Image Interpretation, Computer-Assisted
Regression Analysis
Severity of Illness Index
Spirometry
Tomography, X-Ray Computed
title Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20extent%20of%20emphysema:%20factors%20associated%20with%20radiologists'%20estimations%20and%20quantitative%20indices%20of%20emphysema%20severity%20using%20the%20ECLIPSE%20cohort&rft.jtitle=Academic%20radiology&rft.au=Gietema,%20Hester%20A&rft.aucorp=Evaluation%20of%20COPD%20Longitudinally%20to%20Identify%20Predictive%20Surrogate%20Endpoints%20(ECLIPSE)%20investigators&rft.date=2011-06&rft.volume=18&rft.issue=6&rft.spage=661&rft.epage=671&rft.pages=661-671&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2011.01.011&rft_dat=%3Cproquest_pubme%3E873494320%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873494320&rft_id=info:pmid/21393027&rfr_iscdi=true