Optimal goodness-of-fit tests for recurrent event data
A class of tests for the hypothesis that the baseline intensity belongs to a parametric class of intensities is given in the recurrent event setting. Asymptotic properties of a weighted general class of processes that compare the non-parametric versus parametric estimators for the cumulative intensi...
Gespeichert in:
Veröffentlicht in: | Lifetime data analysis 2011-07, Vol.17 (3), p.409-432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A class of tests for the hypothesis that the baseline intensity belongs to a parametric class of intensities is given in the recurrent event setting. Asymptotic properties of a weighted general class of processes that compare the non-parametric versus parametric estimators for the cumulative intensity are presented. These results are given for a sequence of Pitman alternatives. Test statistics are proposed and methods of obtaining critical values are examined. Optimal choices for the weight function are given for a class of chi-squared tests. Based on Khmaladze’s transformation we propose distributional free tests. These include the types of Kolmogorov–Smirnov and Cramér–von Mises. The tests are used to analyze two different data sets. |
---|---|
ISSN: | 1380-7870 1572-9249 |
DOI: | 10.1007/s10985-011-9193-1 |