Optimal goodness-of-fit tests for recurrent event data

A class of tests for the hypothesis that the baseline intensity belongs to a parametric class of intensities is given in the recurrent event setting. Asymptotic properties of a weighted general class of processes that compare the non-parametric versus parametric estimators for the cumulative intensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lifetime data analysis 2011-07, Vol.17 (3), p.409-432
Hauptverfasser: Stocker, Russell S., Adekpedjou, Akim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of tests for the hypothesis that the baseline intensity belongs to a parametric class of intensities is given in the recurrent event setting. Asymptotic properties of a weighted general class of processes that compare the non-parametric versus parametric estimators for the cumulative intensity are presented. These results are given for a sequence of Pitman alternatives. Test statistics are proposed and methods of obtaining critical values are examined. Optimal choices for the weight function are given for a class of chi-squared tests. Based on Khmaladze’s transformation we propose distributional free tests. These include the types of Kolmogorov–Smirnov and Cramér–von Mises. The tests are used to analyze two different data sets.
ISSN:1380-7870
1572-9249
DOI:10.1007/s10985-011-9193-1