Shape Selectivity for Constrained Solutes in Reversed-Phase Liquid Chromatography
In reversed-phase liquid chromatography (RPLC), the separation of compound mixtures of similar polarity can present a significant challenge for the analyst. Examples of such compounds include geometric isomers present in environmental samples (e.g., polycyclic aromatic hydrocarbons, polycyclic aroma...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1999-11, Vol.71 (21), p.4821-4830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In reversed-phase liquid chromatography (RPLC), the separation of compound mixtures of similar polarity can present a significant challenge for the analyst. Examples of such compounds include geometric isomers present in environmental samples (e.g., polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur heterocycles, and polychlorinated biphenyl congeners) and compounds of biological significance (e.g., carotenoids and steroids). In general, compounds with rigid, well-defined molecular shape are best separated using a column with enhanced shape selectivity characteristics. This perspective presents an overview of column properties that influence shape selectivity for constrained solutes. Approaches to the characterization of stationary-phase structure are described, and the findings are correlated with chromatographic performance. Finally, retention models of shape discrimination are presented that are consistent with observed retention behavior. An appreciation for shape recognition effects in RPLC will facilitate method development for certain classes of difficult to resolve compounds. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac9908187 |