Packed Column Supercritical Fluid Chromatography/Mass Spectrometry for High-Throughput Analysis
A supercritical fluid chromatograph was interfaced to a mass spectrometer, and the system was evaluated for applications requiring high sample throughput. Experiments presented demonstrate the high-speed separation capability of supercritical fluid chromatography (SFC) and the effectiveness of super...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1999-07, Vol.71 (13), p.2410-2416 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A supercritical fluid chromatograph was interfaced to a mass spectrometer, and the system was evaluated for applications requiring high sample throughput. Experiments presented demonstrate the high-speed separation capability of supercritical fluid chromatography (SFC) and the effectiveness of supercritical fluid chromatography/mass spectrometry (SFC/MS) for fast, accurate determinations of multicomponent mixtures. A high-throughput liquid chromatography/mass spectrometry (LC/MS) analysis cycle time is reduced 3-fold using our general SFC/MS high-throughput method, resulting in substantial time saving for large numbers of samples. Unknown mixture characterization is improved due to the increased selectivity of SFC/MS compared to LC/MS. This was demonstrated with sample mixtures from a 96-well combinatorial library plate. In this paper, we report a negative mode atmospheric pressure chemical ionization (APCI) method for SFC/MS suitable for most of the components in library production mixtures. Flow injection analysis (FIA) also benefits from this SFC/MS system. A broader range of solvents is amenable to the SFC mobile phase compared with standard LC/MS solvents, and solutes elute more rapidly from the SFC/MS system, reducing sample carryover and cycle time. Finally, our instrumental setup allows for facile conversion between LC/MS and SFC/MS modes of operation. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac981372h |