Identification of Mineral Phases on Basalt Surfaces by Imaging SIMS
A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined b...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1999-05, Vol.71 (9), p.1712-1719 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined by interrogating the intact basalt (heterogeneous mix of mineral phases) as well as mineral phases that have been separated from the basalt samples. Mineral separates from the basalt were used to establish reference spectra for the specific mineral phases. Electron microprobe and X-ray photoelectron spectroscopy were used as supplemental techniques for providing additional characterization of the basalt. Mineral phases that make up the composition of the basalt were identified from single-ion images which were statistically grouped. The statistical grouping is performed by utilizing a program that employs a generalized learning vector quantization technique. Identification of the mineral phases on the basalt surface is achieved by comparing the mass spectra from the statistically grouped regions of the basalt to the mass spectral results from the mineral separates. The results of this work illustrate the potential for using imaging SIMS to study adsorption chemistry at the top surface of heterogeneous mineral samples. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac9811571 |