Acetoclastic methanogens in an anaerobic digester could be susceptible to trace metal supplementation
The objective of this study was to investigate the effects of nutrient supplementation on anaerobic biomass. While many studies emphasized the importance of supplementing trace metals such as iron, cobalt, and nickel for maximum methanogenic activity, there is no evidence whether such supplements, e...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2010-01, Vol.62 (12), p.2905-2911 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to investigate the effects of nutrient supplementation on anaerobic biomass. While many studies emphasized the importance of supplementing trace metals such as iron, cobalt, and nickel for maximum methanogenic activity, there is no evidence whether such supplements, even at relatively low concentration, could perturb anaerobic biomass. Effects of supplementing nutrients, including yeast extract, on anaerobic biomass from two full-scale mesophilic digesters, operating under different conditions, at the North East Water Pollution Control Plant in Philadelphia, Pennsylvania, USA, were assessed using biochemical methane potential tests. The results show that acetoclastic methanogens from a recently cleaned digester was not stimulated by nutrient supplementation at relatively low concentrations and a slight perturbation was observed when supplementation was at a relatively high concentration. Furthermore, greater degree of susceptibility to the trace metal supplementation was observed for biomass from another digester that had not been cleaned for over 10 years, thus it had reduced active volume due to grit accumulation. For instance, supplementation of 200 mg/L of iron as FeCl(2)·4H(2)O to the biomass from the reduced-active-volume digester caused 17% reduction in CH(4) production, as compared to a control which did not receive any supplements, while the same concentration had no effect on the biomass from full-active-volume digester. Results strongly suggest that acetoclastic methanogens stressed due to reduced hydraulic/solids retention time may be susceptible to trace metal addition. Therefore, trace metal supplementation for anaerobic digesters should be considered on a case by case basis. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2010.161 |