Sticky Interconnect for Solution-Processed Tandem Solar Cells
Graphene oxide (GO) can be viewed as a two-dimensional, random diblock copolymer with distributed nanosize graphitic patches and highly oxidized domains, thus capable of guiding the assembly of other materials through both π–π stacking and hydrogen bonding. Upon mixing GO and conducting polymer poly...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2011-06, Vol.133 (24), p.9262-9265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene oxide (GO) can be viewed as a two-dimensional, random diblock copolymer with distributed nanosize graphitic patches and highly oxidized domains, thus capable of guiding the assembly of other materials through both π–π stacking and hydrogen bonding. Upon mixing GO and conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in water, a dispersion with dramatically increased viscosity is obtained, which turns into sticky thin films upon casting. Surprisingly, the insulating GO makes PEDOT much more conductive by altering its chain conformation and morphology. The GO/PEDOT gel can function as a metal-free solder for creating mechanical and electrical connections in organic optoelectronic devices. As a proof-of-concept, polymer tandem solar cells have been fabricated by a direct adhesive lamination process enabled by the sticky GO/PEDOT film. The sticky interconnect can greatly simplify the fabrication of organic tandem architectures, which has been quite challenging via solution processing. Thus, it could facilitate the construction of high-efficiency tandem solar cells with different combinations of solution-processable materials. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja203464n |