Phenotypic and physiological alterations by heterologous acylhomoserine lactone synthase expression in Pseudomonas putida

Many bacteria harbour an incomplete quorum-sensing (QS) system, whereby they possess LuxR homologues without the QS acylhomoserine lactone (AHL) synthase, which is encoded by a luxI homologue. An artificial AHL-producing plasmid was constructed using a cviI gene encoding the C6-AHL [N-hexanoyl homos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2010-12, Vol.156 (Pt 12), p.3762-3772
Hauptverfasser: LEE, Yunho, YEOM, Jinki, KIM, Jisun, JUNG, Jaejoon, CHE OK JEON, PARK, Woojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many bacteria harbour an incomplete quorum-sensing (QS) system, whereby they possess LuxR homologues without the QS acylhomoserine lactone (AHL) synthase, which is encoded by a luxI homologue. An artificial AHL-producing plasmid was constructed using a cviI gene encoding the C6-AHL [N-hexanoyl homoserine lactone (HHL)] synthase from Chromobacterium violaceum, and was introduced successfully into both the wild-type and a ppoR (luxR homologue) mutant of Pseudomonas putida. Our data provide evidence to suggest that the PpoR-HHL complex, but neither PpoR nor HHL alone, could attenuate growth, antibiotic resistance and biofilm formation ability. In contrast, swimming motility, siderophore production and indole degradation were enhanced by PpoR-HHL. The addition of exogenous indole increased biofilm formation and reduced swimming motility. Interestingly, indole proved ineffective in the presence of PpoR-HHL, thereby suggesting that the PpoR-HHL complex masks the effects of indole. Our data were supported by transcriptome analyses, which showed that the presence of the plasmid-encoded AHL synthase altered the expression of many genes on the chromosome in strain KT2440. Our results showed that heterologous luxI expression that occurs via horizontal gene transfer can regulate a broad range of specific target genes, resulting in alterations of the phenotype and physiology of host cells.
ISSN:1350-0872
1465-2080
DOI:10.1099/mic.0.041095-0