Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles
We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional gro...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2011-06, Vol.83 (12), p.4970-4974 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4974 |
---|---|
container_issue | 12 |
container_start_page | 4970 |
container_title | Analytical chemistry (Washington) |
container_volume | 83 |
creator | Hennig, Andreas Hoffmann, Angelika Borcherding, Heike Thiele, Thomas Schedler, Uwe Resch-Genger, Ute |
description | We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional groups, which allows their extraction by a single centrifugation step. Remaining M2+ in the supernatant is subsequently quantified spectrophotometrically after addition of the metal ion indicator pyrocatechol violet, for which Ni2+ was identified to be the most suitable transition metal cation. We demonstrate that the difference between added and detected M2+ is nicely correlated to the number of surface carboxy groups as determined by conductometry, thereby affording a validated measure for the trueness of this procedure. The variation coefficient of ∼5% found in reproducibility studies underlines the potential of this novel method that can find conceivable applications for the characterization of different types of poly(carboxylic acid)-functionalized materials, e.g., for quality control by manufacturers of such materials. |
doi_str_mv | 10.1021/ac2007619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_871967838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395665161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-6c5f8f000d2f027a571ef0ac89d9d7da3dd5ecba2cfa0e70a9d813099b9f5b303</originalsourceid><addsrcrecordid>eNpl0E1rGzEQBmBRUmrH6aF_IIhACDlsOtJ-SHsMpk0DLklJcgsss_qgMrsrR9qF-N9XJa4N6WkOejTz8hLyhcEVA86-ouIAomL1BzJnJYeskpIfkTkA5BkXADNyHOMagDFg1Scy46ysGFTFnDw_uH7TGbr0nQ-uN2Nwiv4042-vqfWB_ppwGJ11CkfnB-otfZiCRZV-YGj965beBD9tIk2P977b9ibQewyjU52JJ-SjxS6az7u5IE_fvz0uf2Sru5vb5fUqwyIXY1ap0kqbwmpugQssBTMWUMla11pozLUujWqRK4tgBGCtJcuhrtvalm0O-YJcvO3dBP8ymTg2vYvKdB0Oxk-xkYLVlZC5TPLsnVz7KQwpXEKlSIKLhC7fkAo-xmBss0nVYNg2DJq_hTf7wpM93S2c2t7ovfzXcALnO4BRYWcDDsrFgyt4yWXBDg5VPIT6_-AfYcWTgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875738327</pqid></control><display><type>article</type><title>Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hennig, Andreas ; Hoffmann, Angelika ; Borcherding, Heike ; Thiele, Thomas ; Schedler, Uwe ; Resch-Genger, Ute</creator><creatorcontrib>Hennig, Andreas ; Hoffmann, Angelika ; Borcherding, Heike ; Thiele, Thomas ; Schedler, Uwe ; Resch-Genger, Ute</creatorcontrib><description>We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional groups, which allows their extraction by a single centrifugation step. Remaining M2+ in the supernatant is subsequently quantified spectrophotometrically after addition of the metal ion indicator pyrocatechol violet, for which Ni2+ was identified to be the most suitable transition metal cation. We demonstrate that the difference between added and detected M2+ is nicely correlated to the number of surface carboxy groups as determined by conductometry, thereby affording a validated measure for the trueness of this procedure. The variation coefficient of ∼5% found in reproducibility studies underlines the potential of this novel method that can find conceivable applications for the characterization of different types of poly(carboxylic acid)-functionalized materials, e.g., for quality control by manufacturers of such materials.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac2007619</identifier><identifier>PMID: 21561064</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Cadmium - chemistry ; Carboxylic Acids - analysis ; Cations - chemistry ; Chemistry ; Cobalt - chemistry ; Colorimetry - methods ; Correlation analysis ; Electrochemical methods ; Exact sciences and technology ; Metals ; Nanoparticles ; Nanoparticles - chemistry ; Nickel - chemistry ; Polymers ; Polymers - chemistry ; Spectrometric and optical methods ; Transition Elements - chemistry</subject><ispartof>Analytical chemistry (Washington), 2011-06, Vol.83 (12), p.4970-4974</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 15, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-6c5f8f000d2f027a571ef0ac89d9d7da3dd5ecba2cfa0e70a9d813099b9f5b303</citedby><cites>FETCH-LOGICAL-a437t-6c5f8f000d2f027a571ef0ac89d9d7da3dd5ecba2cfa0e70a9d813099b9f5b303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac2007619$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac2007619$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24252841$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21561064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hennig, Andreas</creatorcontrib><creatorcontrib>Hoffmann, Angelika</creatorcontrib><creatorcontrib>Borcherding, Heike</creatorcontrib><creatorcontrib>Thiele, Thomas</creatorcontrib><creatorcontrib>Schedler, Uwe</creatorcontrib><creatorcontrib>Resch-Genger, Ute</creatorcontrib><title>Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional groups, which allows their extraction by a single centrifugation step. Remaining M2+ in the supernatant is subsequently quantified spectrophotometrically after addition of the metal ion indicator pyrocatechol violet, for which Ni2+ was identified to be the most suitable transition metal cation. We demonstrate that the difference between added and detected M2+ is nicely correlated to the number of surface carboxy groups as determined by conductometry, thereby affording a validated measure for the trueness of this procedure. The variation coefficient of ∼5% found in reproducibility studies underlines the potential of this novel method that can find conceivable applications for the characterization of different types of poly(carboxylic acid)-functionalized materials, e.g., for quality control by manufacturers of such materials.</description><subject>Analytical chemistry</subject><subject>Cadmium - chemistry</subject><subject>Carboxylic Acids - analysis</subject><subject>Cations - chemistry</subject><subject>Chemistry</subject><subject>Cobalt - chemistry</subject><subject>Colorimetry - methods</subject><subject>Correlation analysis</subject><subject>Electrochemical methods</subject><subject>Exact sciences and technology</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nickel - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Spectrometric and optical methods</subject><subject>Transition Elements - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1rGzEQBmBRUmrH6aF_IIhACDlsOtJ-SHsMpk0DLklJcgsss_qgMrsrR9qF-N9XJa4N6WkOejTz8hLyhcEVA86-ouIAomL1BzJnJYeskpIfkTkA5BkXADNyHOMagDFg1Scy46ysGFTFnDw_uH7TGbr0nQ-uN2Nwiv4042-vqfWB_ppwGJ11CkfnB-otfZiCRZV-YGj965beBD9tIk2P977b9ibQewyjU52JJ-SjxS6az7u5IE_fvz0uf2Sru5vb5fUqwyIXY1ap0kqbwmpugQssBTMWUMla11pozLUujWqRK4tgBGCtJcuhrtvalm0O-YJcvO3dBP8ymTg2vYvKdB0Oxk-xkYLVlZC5TPLsnVz7KQwpXEKlSIKLhC7fkAo-xmBss0nVYNg2DJq_hTf7wpM93S2c2t7ovfzXcALnO4BRYWcDDsrFgyt4yWXBDg5VPIT6_-AfYcWTgA</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Hennig, Andreas</creator><creator>Hoffmann, Angelika</creator><creator>Borcherding, Heike</creator><creator>Thiele, Thomas</creator><creator>Schedler, Uwe</creator><creator>Resch-Genger, Ute</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20110615</creationdate><title>Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles</title><author>Hennig, Andreas ; Hoffmann, Angelika ; Borcherding, Heike ; Thiele, Thomas ; Schedler, Uwe ; Resch-Genger, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-6c5f8f000d2f027a571ef0ac89d9d7da3dd5ecba2cfa0e70a9d813099b9f5b303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Cadmium - chemistry</topic><topic>Carboxylic Acids - analysis</topic><topic>Cations - chemistry</topic><topic>Chemistry</topic><topic>Cobalt - chemistry</topic><topic>Colorimetry - methods</topic><topic>Correlation analysis</topic><topic>Electrochemical methods</topic><topic>Exact sciences and technology</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nickel - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Spectrometric and optical methods</topic><topic>Transition Elements - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hennig, Andreas</creatorcontrib><creatorcontrib>Hoffmann, Angelika</creatorcontrib><creatorcontrib>Borcherding, Heike</creatorcontrib><creatorcontrib>Thiele, Thomas</creatorcontrib><creatorcontrib>Schedler, Uwe</creatorcontrib><creatorcontrib>Resch-Genger, Ute</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hennig, Andreas</au><au>Hoffmann, Angelika</au><au>Borcherding, Heike</au><au>Thiele, Thomas</au><au>Schedler, Uwe</au><au>Resch-Genger, Ute</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-06-15</date><risdate>2011</risdate><volume>83</volume><issue>12</issue><spage>4970</spage><epage>4974</epage><pages>4970-4974</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional groups, which allows their extraction by a single centrifugation step. Remaining M2+ in the supernatant is subsequently quantified spectrophotometrically after addition of the metal ion indicator pyrocatechol violet, for which Ni2+ was identified to be the most suitable transition metal cation. We demonstrate that the difference between added and detected M2+ is nicely correlated to the number of surface carboxy groups as determined by conductometry, thereby affording a validated measure for the trueness of this procedure. The variation coefficient of ∼5% found in reproducibility studies underlines the potential of this novel method that can find conceivable applications for the characterization of different types of poly(carboxylic acid)-functionalized materials, e.g., for quality control by manufacturers of such materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21561064</pmid><doi>10.1021/ac2007619</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2011-06, Vol.83 (12), p.4970-4974 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_871967838 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Cadmium - chemistry Carboxylic Acids - analysis Cations - chemistry Chemistry Cobalt - chemistry Colorimetry - methods Correlation analysis Electrochemical methods Exact sciences and technology Metals Nanoparticles Nanoparticles - chemistry Nickel - chemistry Polymers Polymers - chemistry Spectrometric and optical methods Transition Elements - chemistry |
title | Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Colorimetric%20Method%20for%20Quantification%20of%20Surface%20Carboxy%20Groups%20on%20Polymer%20Particles&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Hennig,%20Andreas&rft.date=2011-06-15&rft.volume=83&rft.issue=12&rft.spage=4970&rft.epage=4974&rft.pages=4970-4974&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac2007619&rft_dat=%3Cproquest_cross%3E2395665161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875738327&rft_id=info:pmid/21561064&rfr_iscdi=true |