Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles

We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-06, Vol.83 (12), p.4970-4974
Hauptverfasser: Hennig, Andreas, Hoffmann, Angelika, Borcherding, Heike, Thiele, Thomas, Schedler, Uwe, Resch-Genger, Ute
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel, simple, and fast colorimetric method to quantify the total number of carboxy groups on polymer microparticle and nanoparticle surfaces. This method exploits that small divalent transition metal cations (M2+ = Ni2+, Co2+, Cd2+) are efficiently bound to these surface functional groups, which allows their extraction by a single centrifugation step. Remaining M2+ in the supernatant is subsequently quantified spectrophotometrically after addition of the metal ion indicator pyrocatechol violet, for which Ni2+ was identified to be the most suitable transition metal cation. We demonstrate that the difference between added and detected M2+ is nicely correlated to the number of surface carboxy groups as determined by conductometry, thereby affording a validated measure for the trueness of this procedure. The variation coefficient of ∼5% found in reproducibility studies underlines the potential of this novel method that can find conceivable applications for the characterization of different types of poly(carboxylic acid)-functionalized materials, e.g., for quality control by manufacturers of such materials.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac2007619