Modeling the urinary tract-computational, physical, and biological methods
Models of the lower urinary tract are used to understand better the physiological and pathological functions of the tract and to gain insight into the relative importance of different components. The key requirement of a model is described, namely: to involve a continuous iteration with experiment;...
Gespeichert in:
Veröffentlicht in: | Neurourology and urodynamics 2011-06, Vol.30 (5), p.692-699 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Models of the lower urinary tract are used to understand better the physiological and pathological functions of the tract and to gain insight into the relative importance of different components. The key requirement of a model is described, namely: to involve a continuous iteration with experiment; whereby experiments provide parameters and validation for components of the model, which is then used to generate hypotheses, which are tested experimentally. Different types of models are described: computational models that describe mathematically the whole urinary tract or components; physical models useful especially in testing medical devices; and tissue‐engineered models. The purpose of modeling is first described in terms of the ability of models to predict the properties of the system of interest, using components that have a physiological interpretation, and to gain insight into the relative importance of different components. Examples are used to illustrate the use of modeling the urinary tract with reference to the different categories listed above. Neurourol. Urodynam. Neurourol. Urodynam. 30:692–699, 2011. © 2011 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0733-2467 1520-6777 |
DOI: | 10.1002/nau.21131 |