Self-incompatibility and floral parameters in Hypochaeris sect. Hypochaeris (Asteraceae)

We studied the relationships between self-incompatibility mechanisms and floral parameters in the genus Hypochaeris L. sect. Hypochaeris (consisting of H. glabra, H. radicata, H. arachnoidea, and H. salzmanniana). We assessed at intra- and interspecific levels (1) the self-incompatibility (SI) mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2006-02, Vol.93 (2), p.234-244
Hauptverfasser: Ortiz, Maria Angeles, Talavera, Salvador, Garcia-Castano, Juan Luis, Tremetsberger, Karin, Stuessy, Tod, Balao, Francisco, Casimiro-Soriguer, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the relationships between self-incompatibility mechanisms and floral parameters in the genus Hypochaeris L. sect. Hypochaeris (consisting of H. glabra, H. radicata, H. arachnoidea, and H. salzmanniana). We assessed at intra- and interspecific levels (1) the self-incompatibility (SI) mechanism and its distribution among populations, (2) the relationship between SI and floral parameters, and (3) the relationship of SI to reproductive success. Hypochaeris salzmanniana is semi-incompatible, H. glabra is self-compatible, and H. arachnoidea and H. radicata are self-incompatible. Floral parameters differed among populations of H. salzmanniana: plants in self-compatible populations had fewer flowers per head, a smaller head diameter on the flower, and a shorter period of anthesis than self-incompatible populations. We also detected this pattern within a semi-compatible population of H. salzmanniana, and these differences were also found between species with different breeding mechanisms. Fruit to flower ratio in natural populations was generally high (>60%) in all species, regardless of breeding system. It is hypothesized that self-compatibility may have arisen through loss of allelic diversity at the S locus due to bottleneck events and genetic drift.
ISSN:0002-9122
1537-2197
DOI:10.3732/ajb.93.2.234