Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers
A practical optical sensing system for the determination of chloramphenicol (CAP), utilizing molecularly imprinted polymers (MIPs) and HPLC, has been developed. The method is based on competitive displacement of a chloramphenicol−methyl red (CAP−MR) dye conjugate from specific binding cavities in an...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1997-06, Vol.69 (11), p.2017-2021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A practical optical sensing system for the determination of chloramphenicol (CAP), utilizing molecularly imprinted polymers (MIPs) and HPLC, has been developed. The method is based on competitive displacement of a chloramphenicol−methyl red (CAP−MR) dye conjugate from specific binding cavities in an imprinted polymer by the analyte. The best of these polymers was obtained using (diethylamino)ethyl methacrylate as functional monomer at a monomer:template ratio of 2:1. HPLC with a mobile phase containing CAP−MR was used as the detection system, and injection of CAP and, to a lesser degree, thiamphenicol resulted in proportional displacement of the conjugate, which was detected at 460 nm. The detection system showed a linear response over a range of 3−1000 μg/mL and effectively detected CAP extracted from serum. This system offers a tailor-made, selective, and rapid method for CAP detection, is able to discriminate between similar molecules, and is effective below and above the therapeutic range (10−20 μg/mL serum, potentially toxic above 25 μg/mL). This technique is quite general and should enable the use of MIPs in a wide variety of applications involving the detection of families of molecules which possess a distinct arrangement of functional groups. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac960983b |