Semi-Automated Detection of Trace Explosives in Fingerprints on Strongly Interfering Surfaces with Raman Chemical Imaging
We have previously demonstrated the use of wide-field Raman chemical imaging (RCI) to detect and identify the presence of trace explosives in contaminated fingerprints. In this current work we demonstrate the detection of trace explosives in contaminated fingerprints on strongly Raman scattering sur...
Gespeichert in:
Veröffentlicht in: | Applied spectroscopy 2011-06, Vol.65 (6), p.611-619 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have previously demonstrated the use of wide-field Raman chemical imaging (RCI) to detect and identify the presence of trace explosives in contaminated fingerprints. In this current work we demonstrate the detection of trace explosives in contaminated fingerprints on strongly Raman scattering surfaces such as plastics and painted metals using an automated background subtraction routine. We demonstrate the use of partial least squares subtraction to minimize the interfering surface spectral signatures, allowing the detection and identification of explosive materials in the corrected Raman images. The resulting analyses are then visually superimposed on the corresponding bright field images to physically locate traces of explosives. Additionally, we attempt to address the question of whether a complete RCI of a fingerprint is required for trace explosive detection or whether a simple non-imaging Raman spectrum is sufficient. This investigation further demonstrates the ability to nondestructively identify explosives on fingerprints present on commonly found surfaces such that the fingerprint remains intact for further biometric analysis. |
---|---|
ISSN: | 0003-7028 1943-3530 |
DOI: | 10.1366/10-06214 |