Bayesian inference for exponential random graph models

Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 2011, Vol.33 (1), p.41-55
Hauptverfasser: Caimo, Alberto, Friel, Nial
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 41
container_title Social networks
container_volume 33
creator Caimo, Alberto
Friel, Nial
description Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992).
doi_str_mv 10.1016/j.socnet.2010.09.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_870432619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873310000493</els_id><sourcerecordid>853213332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7a0e139ac8893a3189fd8c7444f554081d3d772085f4dfec6f0acec7ee2c368c3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-AxfdiKvWm0ebdCPo4AsG3Og6hPRGM7RNTTqi_94OHVzq6sLlO-fAR8g5hYICra42RQq2x7FgML2gLgDEAVlQJeucUUoPyQK4VLmSnB-Tk5Q2AFBJqhakujXfmLzpM987jNhbzFyIGX4Nocd-9KbNoumb0GVv0QzvWRcabNMpOXKmTXi2v0vyen_3snrM188PT6ubdW4FwJhLA0h5baxSNTecqto1ykohhCtLAYo2vJGSgSqdaBzayoGxaCUis7xSli_J5dw7xPCxxTTqzieLbWt6DNuklQTBWUXr_8mSM8o5ZxMpZtLGkFJEp4foOxO_NQW986k3evapdz411HryOcUu9gMmWdO6yYr16TfLuKoYhWrirmdu0oSfHqNO1u-8Nj6iHXUT_N9DP5DQjJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853213332</pqid></control><display><type>article</type><title>Bayesian inference for exponential random graph models</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Caimo, Alberto ; Friel, Nial</creator><creatorcontrib>Caimo, Alberto ; Friel, Nial</creatorcontrib><description>Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992).</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2010.09.004</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Bayesian method ; Exponential random graph models ; History, theory and methodology ; Markov chain Monte Carlo ; Methodology ; Research methods ; Respect ; Social network analysis ; Social networks ; Sociology ; Statistics</subject><ispartof>Social networks, 2011, Vol.33 (1), p.41-55</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7a0e139ac8893a3189fd8c7444f554081d3d772085f4dfec6f0acec7ee2c368c3</citedby><cites>FETCH-LOGICAL-c400t-7a0e139ac8893a3189fd8c7444f554081d3d772085f4dfec6f0acec7ee2c368c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378873310000493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,33754,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23862106$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caimo, Alberto</creatorcontrib><creatorcontrib>Friel, Nial</creatorcontrib><title>Bayesian inference for exponential random graph models</title><title>Social networks</title><description>Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992).</description><subject>Algorithms</subject><subject>Bayesian method</subject><subject>Exponential random graph models</subject><subject>History, theory and methodology</subject><subject>Markov chain Monte Carlo</subject><subject>Methodology</subject><subject>Research methods</subject><subject>Respect</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Sociology</subject><subject>Statistics</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkEtLxDAUhYMoOI7-AxfdiKvWm0ebdCPo4AsG3Og6hPRGM7RNTTqi_94OHVzq6sLlO-fAR8g5hYICra42RQq2x7FgML2gLgDEAVlQJeucUUoPyQK4VLmSnB-Tk5Q2AFBJqhakujXfmLzpM987jNhbzFyIGX4Nocd-9KbNoumb0GVv0QzvWRcabNMpOXKmTXi2v0vyen_3snrM188PT6ubdW4FwJhLA0h5baxSNTecqto1ykohhCtLAYo2vJGSgSqdaBzayoGxaCUis7xSli_J5dw7xPCxxTTqzieLbWt6DNuklQTBWUXr_8mSM8o5ZxMpZtLGkFJEp4foOxO_NQW986k3evapdz411HryOcUu9gMmWdO6yYr16TfLuKoYhWrirmdu0oSfHqNO1u-8Nj6iHXUT_N9DP5DQjJs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Caimo, Alberto</creator><creator>Friel, Nial</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>2011</creationdate><title>Bayesian inference for exponential random graph models</title><author>Caimo, Alberto ; Friel, Nial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7a0e139ac8893a3189fd8c7444f554081d3d772085f4dfec6f0acec7ee2c368c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bayesian method</topic><topic>Exponential random graph models</topic><topic>History, theory and methodology</topic><topic>Markov chain Monte Carlo</topic><topic>Methodology</topic><topic>Research methods</topic><topic>Respect</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caimo, Alberto</creatorcontrib><creatorcontrib>Friel, Nial</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caimo, Alberto</au><au>Friel, Nial</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for exponential random graph models</atitle><jtitle>Social networks</jtitle><date>2011</date><risdate>2011</risdate><volume>33</volume><issue>1</issue><spage>41</spage><epage>55</epage><pages>41-55</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2010.09.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 2011, Vol.33 (1), p.41-55
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_870432619
source Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Algorithms
Bayesian method
Exponential random graph models
History, theory and methodology
Markov chain Monte Carlo
Methodology
Research methods
Respect
Social network analysis
Social networks
Sociology
Statistics
title Bayesian inference for exponential random graph models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20exponential%20random%20graph%20models&rft.jtitle=Social%20networks&rft.au=Caimo,%20Alberto&rft.date=2011&rft.volume=33&rft.issue=1&rft.spage=41&rft.epage=55&rft.pages=41-55&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/j.socnet.2010.09.004&rft_dat=%3Cproquest_cross%3E853213332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853213332&rft_id=info:pmid/&rft_els_id=S0378873310000493&rfr_iscdi=true