Bayesian inference for exponential random graph models

Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 2011, Vol.33 (1), p.41-55
Hauptverfasser: Caimo, Alberto, Friel, Nial
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992).
ISSN:0378-8733
1879-2111
DOI:10.1016/j.socnet.2010.09.004