Performance-Improved Design of N-PID Controlled Motion Systems With Applications to Wafer Stages

A nonlinear filter design is proposed to improve nanopositioning servo performances in high-speed (and generally linear) motion systems. The design offers a means to adapt fundamental control design tradeoffs-like disturbance suppression versus noise sensitivity-which are otherwise fixed. Typically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2009-05, Vol.56 (5), p.1347-1355
Hauptverfasser: Heertjes, M.F., Schuurbiers, X.G.P., Nijmeijer, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear filter design is proposed to improve nanopositioning servo performances in high-speed (and generally linear) motion systems. The design offers a means to adapt fundamental control design tradeoffs-like disturbance suppression versus noise sensitivity-which are otherwise fixed. Typically performance-limiting oscillations in the feedback system that benefit from extra control are temporarily upscaled and subjected to nonlinear weighting. For sufficiently large amplitudes, this nonlinear filter operation induces extra controller gain. Oscillations that do not benefit from this extra control (typically because they represent noise contributions that should not be amplified) remain unscaled and, as such, do not induce extra controller gain. The combined usage of linear weighting filters with their exact inverses renders this part of the nonlinear filter design strictly performance based. The effective means to improve servo performance is demonstrated on a short-stroke wafer stage of an industrial wafer scanner. Since the nonlinear filter design is largely based on Lyapunov arguments, stability is guaranteed along the different design steps.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2009.2012420