A Probabilistic Framework for 3D Visual Object Representation
We present an object representation framework that encodes probabilistic spatial relations between 3D features and organizes these features in a hierarchy. Features at the bottom of the hierarchy are bound to local 3D descriptors. Higher level features recursively encode probabilistic spatial config...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2009-10, Vol.31 (10), p.1790-1803 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an object representation framework that encodes probabilistic spatial relations between 3D features and organizes these features in a hierarchy. Features at the bottom of the hierarchy are bound to local 3D descriptors. Higher level features recursively encode probabilistic spatial configurations of more elementary features. The hierarchy is implemented in a Markov network. Detection is carried out by a belief propagation algorithm, which infers the pose of high-level features from local evidence and reinforces local evidence from globally consistent knowledge, effectively producing a likelihood for the pose of the object in the detection scene. We also present a simple learning algorithm that autonomously builds hierarchies from local object descriptors. We explain how to use our framework to estimate the pose of a known object in an unknown scene. Experiments demonstrate the robustness of hierarchies to input noise, viewpoint changes, and occlusions. |
---|---|
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/TPAMI.2009.64 |