Replacing Associative Load Queues: A Timing-Centric Approach
One of the main challenges of modern processor design is the implementation of a scalable and efficient mechanism to detect memory access order violations as a result of out-of-order execution. Traditional age-ordered associative load queues are complex, inefficient, and power hungry. In this paper,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2009-04, Vol.58 (4), p.496-511 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main challenges of modern processor design is the implementation of a scalable and efficient mechanism to detect memory access order violations as a result of out-of-order execution. Traditional age-ordered associative load queues are complex, inefficient, and power hungry. In this paper, we introduce two new dependence checking schemes with different design tradeoffs, but both explicitly rely on timing information as a primary instrument to rule out dependence violation. Our timing-centric designs operate at a fraction of the energy cost of an associative LQ and achieve the same functionality with an insignificant performance impact on average. Studies with parallel benchmarks also show that they are equally effective and efficient in a chip-multiprocessor environment. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2008.146 |