Solving large Steiner Triple Covering Problems
Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to highly symmetric and computationally challenging set covering problems. The largest instance solved so far corresponds to a Steiner Tripe System of order 81. We present optimal solutions for systems of orders 135...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2011-03, Vol.39 (2), p.127-131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to highly symmetric and computationally challenging set covering problems. The largest instance solved so far corresponds to a Steiner Tripe System of order 81. We present optimal solutions for systems of orders 135 and 243. These are computed by a tailored implementation of
constraint orbital branching, a method designed to exploit symmetry in integer programs. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2011.02.001 |