Solving large Steiner Triple Covering Problems

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to highly symmetric and computationally challenging set covering problems. The largest instance solved so far corresponds to a Steiner Tripe System of order 81. We present optimal solutions for systems of orders 135...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2011-03, Vol.39 (2), p.127-131
Hauptverfasser: Ostrowski, James, Linderoth, Jeff, Rossi, Fabrizio, Smriglio, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to highly symmetric and computationally challenging set covering problems. The largest instance solved so far corresponds to a Steiner Tripe System of order 81. We present optimal solutions for systems of orders 135 and 243. These are computed by a tailored implementation of constraint orbital branching, a method designed to exploit symmetry in integer programs.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2011.02.001