A New Approach to Multifunctional Dynamic Voltage Restorer Implementation for Emergency Control in Distribution Systems

The dynamic voltage restorer (DVR) is one of the modern devices used in distribution systems to protect consumers against sudden changes in voltage amplitude. In this paper, emergency control in distribution systems is discussed by using the proposed multifunctional DVR control strategy. Also, the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2011-04, Vol.26 (2), p.882-890
Hauptverfasser: Mahdianpoor, F M, Hooshmand, R A, Ataei, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic voltage restorer (DVR) is one of the modern devices used in distribution systems to protect consumers against sudden changes in voltage amplitude. In this paper, emergency control in distribution systems is discussed by using the proposed multifunctional DVR control strategy. Also, the multiloop controller using the Posicast and P+Resonant controllers is proposed in order to improve the transient response and eliminate the steady-state error in DVR response, respectively. The proposed algorithm is applied to some disturbances in load voltage caused by induction motors starting, and a three-phase short circuit fault. Also, the capability of the proposed DVR has been tested to limit the downstream fault current. The current limitation will restore the point of common coupling (PCC) (the bus to which all feeders under study are connected) voltage and protect the DVR itself. The innovation here is that the DVR acts as a virtual impedance with the main aim of protecting the PCC voltage during downstream fault without any problem in real power injection into the DVR. Simulation results show the capability of the DVR to control the emergency conditions of the distribution systems.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2010.2093584