Improving SVM-Based Nontechnical Loss Detection in Power Utility Using the Fuzzy Inference System

This letter extends previous research work in modeling a nontechnical loss (NTL) framework for the detection of fraud and electricity theft in power distribution utilities. Previous work was carried out by using a support vector machine (SVM)-based NTL detection framework resulting in a detection hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2011-04, Vol.26 (2), p.1284-1285
Hauptverfasser: Nagi, J, Keem Siah Yap, Sieh Kiong Tiong, Ahmed, S K, Nagi, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter extends previous research work in modeling a nontechnical loss (NTL) framework for the detection of fraud and electricity theft in power distribution utilities. Previous work was carried out by using a support vector machine (SVM)-based NTL detection framework resulting in a detection hitrate of 60%. This letter presents the inclusion of human knowledge and expertise into the SVM-based fraud detection model (FDM) with the introduction of a fuzzy inference system (FIS), in the form of fuzzy IF-THEN rules. The FIS acts as a postprocessing scheme for short-listing customer suspects with higher probabilities of fraud activities. With the implementation of this improved SVM-FIS computational intelligence FDM, Tenaga Nasional Berhad Distribution's detection hitrate has increased from 60% to 72%, thus proving to be cost effective.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2010.2055670