Improving SVM-Based Nontechnical Loss Detection in Power Utility Using the Fuzzy Inference System
This letter extends previous research work in modeling a nontechnical loss (NTL) framework for the detection of fraud and electricity theft in power distribution utilities. Previous work was carried out by using a support vector machine (SVM)-based NTL detection framework resulting in a detection hi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power delivery 2011-04, Vol.26 (2), p.1284-1285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter extends previous research work in modeling a nontechnical loss (NTL) framework for the detection of fraud and electricity theft in power distribution utilities. Previous work was carried out by using a support vector machine (SVM)-based NTL detection framework resulting in a detection hitrate of 60%. This letter presents the inclusion of human knowledge and expertise into the SVM-based fraud detection model (FDM) with the introduction of a fuzzy inference system (FIS), in the form of fuzzy IF-THEN rules. The FIS acts as a postprocessing scheme for short-listing customer suspects with higher probabilities of fraud activities. With the implementation of this improved SVM-FIS computational intelligence FDM, Tenaga Nasional Berhad Distribution's detection hitrate has increased from 60% to 72%, thus proving to be cost effective. |
---|---|
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2010.2055670 |