Efficient learning of multiple context-free languages with multidimensional substitutability from positive data
Recently Clark and Eyraud (2007) [10] have shown that substitutable context-free languages, which capture an aspect of natural language phenomena, are efficiently identifiable in the limit from positive data. Generalizing their work, this paper presents a polynomial-time learning algorithm for new s...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2011-04, Vol.412 (19), p.1821-1831 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently Clark and Eyraud (2007)
[10] have shown that substitutable context-free languages, which capture an aspect of natural language phenomena, are efficiently identifiable in the limit from positive data. Generalizing their work, this paper presents a polynomial-time learning algorithm for new subclasses of multiple context-free languages with variants of substitutability. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2010.12.058 |