A Lyapunov Function for Economic Optimizing Model Predictive Control
Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2011-03, Vol.56 (3), p.703-707 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 3 |
container_start_page | 703 |
container_title | IEEE transactions on automatic control |
container_volume | 56 |
creator | Diehl, M Amrit, R Rawlings, J B |
description | Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points. |
doi_str_mv | 10.1109/TAC.2010.2101291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_869810689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5672577</ieee_id><sourcerecordid>2287852661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</originalsourceid><addsrcrecordid>eNpdkEtLLDEQRoMoOD72gptGEFftTSWddLIcxse9MBddzD5k0tUS6UnGpFvQX29kBheuio86X1EcQi6A3gJQ_Wc1X9wyWhIDCkzDAZmBEKpmgvFDMqMUVK2ZksfkJOfXEmXTwIzczavlh91OIb5XD1Nwo4-h6mOq7l0MceNd9bQd_cZ_-vBS_Y8dDtVzws4X8B2rRQxjisMZOertkPF8P0_J6uF-tfhbL58e_y3my9pxrce671QnWsoabBD7TnaNEMB1L1uH0HFlKQBHpu1aotJr1SlqXSscXQtg1vFTcrM7u03xbcI8mo3PDofBBoxTNkpqBVQqXcirX-RrnFIovxklJLSSS1oguoNcijkn7M02-Y1NHwao-XZqilPz7dTsnZbK9f6uzc4OfbLB-fzTYw1QIXlTuMsd5xHxZy1ky0Tb8i_Cnn5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856176360</pqid></control><display><type>article</type><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Diehl, M ; Amrit, R ; Rawlings, J B</creator><creatorcontrib>Diehl, M ; Amrit, R ; Rawlings, J B</creatorcontrib><description>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2101291</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic stability ; Biological system modeling ; Computer science; control theory; systems ; Control theory. Systems ; Cost engineering ; Cost function ; Dynamical systems ; economic cost function ; Economics ; Exact sciences and technology ; Lyapunov functions ; Lyapunov method ; Mathematical models ; model predictive control (MPC) ; Modelling and identification ; Nonlinear dynamics ; Optimal control ; Optimization ; Steady state ; Studies ; unreachable setpoint ; Zinc</subject><ispartof>IEEE transactions on automatic control, 2011-03, Vol.56 (3), p.703-707</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</citedby><cites>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5672577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5672577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24105634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Diehl, M</creatorcontrib><creatorcontrib>Amrit, R</creatorcontrib><creatorcontrib>Rawlings, J B</creatorcontrib><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Biological system modeling</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost engineering</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>economic cost function</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Mathematical models</subject><subject>model predictive control (MPC)</subject><subject>Modelling and identification</subject><subject>Nonlinear dynamics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Steady state</subject><subject>Studies</subject><subject>unreachable setpoint</subject><subject>Zinc</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLLDEQRoMoOD72gptGEFftTSWddLIcxse9MBddzD5k0tUS6UnGpFvQX29kBheuio86X1EcQi6A3gJQ_Wc1X9wyWhIDCkzDAZmBEKpmgvFDMqMUVK2ZksfkJOfXEmXTwIzczavlh91OIb5XD1Nwo4-h6mOq7l0MceNd9bQd_cZ_-vBS_Y8dDtVzws4X8B2rRQxjisMZOertkPF8P0_J6uF-tfhbL58e_y3my9pxrce671QnWsoabBD7TnaNEMB1L1uH0HFlKQBHpu1aotJr1SlqXSscXQtg1vFTcrM7u03xbcI8mo3PDofBBoxTNkpqBVQqXcirX-RrnFIovxklJLSSS1oguoNcijkn7M02-Y1NHwao-XZqilPz7dTsnZbK9f6uzc4OfbLB-fzTYw1QIXlTuMsd5xHxZy1ky0Tb8i_Cnn5c</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Diehl, M</creator><creator>Amrit, R</creator><creator>Rawlings, J B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20110301</creationdate><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><author>Diehl, M ; Amrit, R ; Rawlings, J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Biological system modeling</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost engineering</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>economic cost function</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Mathematical models</topic><topic>model predictive control (MPC)</topic><topic>Modelling and identification</topic><topic>Nonlinear dynamics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Steady state</topic><topic>Studies</topic><topic>unreachable setpoint</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diehl, M</creatorcontrib><creatorcontrib>Amrit, R</creatorcontrib><creatorcontrib>Rawlings, J B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diehl, M</au><au>Amrit, R</au><au>Rawlings, J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lyapunov Function for Economic Optimizing Model Predictive Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>56</volume><issue>3</issue><spage>703</spage><epage>707</epage><pages>703-707</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2101291</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2011-03, Vol.56 (3), p.703-707 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_869810689 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Asymptotic properties Asymptotic stability Biological system modeling Computer science control theory systems Control theory. Systems Cost engineering Cost function Dynamical systems economic cost function Economics Exact sciences and technology Lyapunov functions Lyapunov method Mathematical models model predictive control (MPC) Modelling and identification Nonlinear dynamics Optimal control Optimization Steady state Studies unreachable setpoint Zinc |
title | A Lyapunov Function for Economic Optimizing Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lyapunov%20Function%20for%20Economic%20Optimizing%20Model%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Diehl,%20M&rft.date=2011-03-01&rft.volume=56&rft.issue=3&rft.spage=703&rft.epage=707&rft.pages=703-707&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2101291&rft_dat=%3Cproquest_RIE%3E2287852661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856176360&rft_id=info:pmid/&rft_ieee_id=5672577&rfr_iscdi=true |