A Lyapunov Function for Economic Optimizing Model Predictive Control

Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-03, Vol.56 (3), p.703-707
Hauptverfasser: Diehl, M, Amrit, R, Rawlings, J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 703
container_title IEEE transactions on automatic control
container_volume 56
creator Diehl, M
Amrit, R
Rawlings, J B
description Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.
doi_str_mv 10.1109/TAC.2010.2101291
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_869810689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5672577</ieee_id><sourcerecordid>2287852661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</originalsourceid><addsrcrecordid>eNpdkEtLLDEQRoMoOD72gptGEFftTSWddLIcxse9MBddzD5k0tUS6UnGpFvQX29kBheuio86X1EcQi6A3gJQ_Wc1X9wyWhIDCkzDAZmBEKpmgvFDMqMUVK2ZksfkJOfXEmXTwIzczavlh91OIb5XD1Nwo4-h6mOq7l0MceNd9bQd_cZ_-vBS_Y8dDtVzws4X8B2rRQxjisMZOertkPF8P0_J6uF-tfhbL58e_y3my9pxrce671QnWsoabBD7TnaNEMB1L1uH0HFlKQBHpu1aotJr1SlqXSscXQtg1vFTcrM7u03xbcI8mo3PDofBBoxTNkpqBVQqXcirX-RrnFIovxklJLSSS1oguoNcijkn7M02-Y1NHwao-XZqilPz7dTsnZbK9f6uzc4OfbLB-fzTYw1QIXlTuMsd5xHxZy1ky0Tb8i_Cnn5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856176360</pqid></control><display><type>article</type><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Diehl, M ; Amrit, R ; Rawlings, J B</creator><creatorcontrib>Diehl, M ; Amrit, R ; Rawlings, J B</creatorcontrib><description>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2101291</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic stability ; Biological system modeling ; Computer science; control theory; systems ; Control theory. Systems ; Cost engineering ; Cost function ; Dynamical systems ; economic cost function ; Economics ; Exact sciences and technology ; Lyapunov functions ; Lyapunov method ; Mathematical models ; model predictive control (MPC) ; Modelling and identification ; Nonlinear dynamics ; Optimal control ; Optimization ; Steady state ; Studies ; unreachable setpoint ; Zinc</subject><ispartof>IEEE transactions on automatic control, 2011-03, Vol.56 (3), p.703-707</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</citedby><cites>FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5672577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5672577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24105634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Diehl, M</creatorcontrib><creatorcontrib>Amrit, R</creatorcontrib><creatorcontrib>Rawlings, J B</creatorcontrib><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Biological system modeling</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Cost engineering</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>economic cost function</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Mathematical models</subject><subject>model predictive control (MPC)</subject><subject>Modelling and identification</subject><subject>Nonlinear dynamics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Steady state</subject><subject>Studies</subject><subject>unreachable setpoint</subject><subject>Zinc</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLLDEQRoMoOD72gptGEFftTSWddLIcxse9MBddzD5k0tUS6UnGpFvQX29kBheuio86X1EcQi6A3gJQ_Wc1X9wyWhIDCkzDAZmBEKpmgvFDMqMUVK2ZksfkJOfXEmXTwIzczavlh91OIb5XD1Nwo4-h6mOq7l0MceNd9bQd_cZ_-vBS_Y8dDtVzws4X8B2rRQxjisMZOertkPF8P0_J6uF-tfhbL58e_y3my9pxrce671QnWsoabBD7TnaNEMB1L1uH0HFlKQBHpu1aotJr1SlqXSscXQtg1vFTcrM7u03xbcI8mo3PDofBBoxTNkpqBVQqXcirX-RrnFIovxklJLSSS1oguoNcijkn7M02-Y1NHwao-XZqilPz7dTsnZbK9f6uzc4OfbLB-fzTYw1QIXlTuMsd5xHxZy1ky0Tb8i_Cnn5c</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Diehl, M</creator><creator>Amrit, R</creator><creator>Rawlings, J B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20110301</creationdate><title>A Lyapunov Function for Economic Optimizing Model Predictive Control</title><author>Diehl, M ; Amrit, R ; Rawlings, J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fd8d57024e4eefd6d455139f67ce1d38a0113e29ab6e89b8d80ac75c0b512ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Biological system modeling</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Cost engineering</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>economic cost function</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Mathematical models</topic><topic>model predictive control (MPC)</topic><topic>Modelling and identification</topic><topic>Nonlinear dynamics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Steady state</topic><topic>Studies</topic><topic>unreachable setpoint</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diehl, M</creatorcontrib><creatorcontrib>Amrit, R</creatorcontrib><creatorcontrib>Rawlings, J B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diehl, M</au><au>Amrit, R</au><au>Rawlings, J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lyapunov Function for Economic Optimizing Model Predictive Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>56</volume><issue>3</issue><spage>703</spage><epage>707</epage><pages>703-707</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2101291</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2011-03, Vol.56 (3), p.703-707
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_869810689
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Asymptotic stability
Biological system modeling
Computer science
control theory
systems
Control theory. Systems
Cost engineering
Cost function
Dynamical systems
economic cost function
Economics
Exact sciences and technology
Lyapunov functions
Lyapunov method
Mathematical models
model predictive control (MPC)
Modelling and identification
Nonlinear dynamics
Optimal control
Optimization
Steady state
Studies
unreachable setpoint
Zinc
title A Lyapunov Function for Economic Optimizing Model Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lyapunov%20Function%20for%20Economic%20Optimizing%20Model%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Diehl,%20M&rft.date=2011-03-01&rft.volume=56&rft.issue=3&rft.spage=703&rft.epage=707&rft.pages=703-707&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2101291&rft_dat=%3Cproquest_RIE%3E2287852661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856176360&rft_id=info:pmid/&rft_ieee_id=5672577&rfr_iscdi=true