A Lyapunov Function for Economic Optimizing Model Predictive Control

Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-03, Vol.56 (3), p.703-707
Hauptverfasser: Diehl, M, Amrit, R, Rawlings, J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Standard model predictive control (MPC) yields an asymptotically stable steady-state solution using the following procedure. Given a dynamic model, a steady state of interest is selected, a stage cost is defined that measures deviation from this selected steady state, the controller cost function is a summation of this stage cost over a time horizon, and the optimal cost is shown to be a Lyapunov function for the closed-loop system. In this technical note, the stage cost is an arbitrary economic objective, which may not depend on a steady state, and the optimal cost is not a Lyapunov function for the closed-loop system. For a class of nonlinear systems and economic stage costs, this technical note constructs a suitable Lyapunov function, and the optimal steady-state solution of the economic stage cost is an asymptotically stable solution of the closed-loop system under economic MPC. Both finite and infinite horizons are treated. The class of nonlinear systems is defined by satisfaction of a strong duality property of the steady-state problem. This class includes linear systems with convex stage costs, generalizing previous stability results and providing a Lyapunov function for economic MPC or MPC with an unreachable setpoint and a linear model. A nonlinear chemical reactor example is provided illustrating these points.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2101291