Mixtures of power series distributions: identifiability via uniqueness in problems of moments
We treat the identifiability problem for mixtures involving power series distributions. Applying an idea of Sapatinas (Ann Inst Stat Math 47:447–459, 1995) we prove and elaborate that a mixture distribution is identifiable if a certain Stieltjes problem of moments has a unique solution while a non-u...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2011-04, Vol.63 (2), p.291-303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We treat the identifiability problem for mixtures involving power series distributions. Applying an idea of Sapatinas (Ann Inst Stat Math 47:447–459, 1995) we prove and elaborate that a mixture distribution is identifiable if a certain Stieltjes problem of moments has a unique solution while a non-uniqueness leads to a non- identifiable mixture. We describe explicitly models of identifiable mixtures and models of non-identifiable mixtures. Illustrative examples and comments on related questions are also given. |
---|---|
ISSN: | 0020-3157 1572-9052 |
DOI: | 10.1007/s10463-009-0221-9 |