Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization
In many real-world problems involving pattern recognition, system identification and modeling, control, decision making, and forecasting of time-series, available data are quite often of uncertain nature. An interesting alternative is to employ type-2 fuzzy sets, which augment fuzzy models with expr...
Gespeichert in:
Veröffentlicht in: | Information sciences 2011-05, Vol.181 (9), p.1591-1608 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many real-world problems involving pattern recognition, system identification and modeling, control, decision making, and forecasting of time-series, available data are quite often of uncertain nature. An interesting alternative is to employ type-2 fuzzy sets, which augment fuzzy models with expressive power to develop models, which efficiently capture the factor of uncertainty. The three-dimensional membership functions of type-2 fuzzy sets offer additional degrees of freedom that make it possible to directly and more effectively account for model’s uncertainties. Type-2 fuzzy logic systems developed with the aid of evolutionary optimization forms a useful modeling tool subsequently resulting in a collection of efficient “If-Then” rules.
The type-2 fuzzy neural networks take advantage of capabilities of fuzzy clustering by generating type-2 fuzzy rule base, resulting in a small number of rules and then optimizing membership functions of type-2 fuzzy sets present in the antecedent and consequent parts of the rules. The clustering itself is realized with the aid of differential evolution.
Several examples, including a benchmark problem of identification of nonlinear system, are considered. The reported comparative analysis of experimental results is used to quantify the performance of the developed networks. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2010.12.014 |