Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-Phase Grid-Interfaced Converters in Distributed Utility Networks
Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL) a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2011-04, Vol.58 (4), p.1194-1204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL) and synchronization techniques have been presented in the past decades. Most of them make a tradeoff between the accuracy and dynamic response under severe distorted and unbalanced conditions. In this paper, a multiple-complex coefficient-filter-based PLL is presented, and its unique feature lies in the accurate and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely, which has the potential use for selective compensation in active filter applications. Another advantage of the proposed method is its flexibility for simplifying its structure in some specified conditions. Results of continuous-domain simulations in MATLAB and discrete-domain experiments based on a 32-b fixed-point TMS320F2812 DSP are in good agreement, which confirm the effectiveness of the proposed method. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2010.2041738 |