An experimental test of Occam’s razor in classification

A widely persisting interpretation of Occam’s razor is that given two classifiers with the same training error, the simpler classifier is more likely to generalize better. Within a long-lasting debate in the machine learning community over Occam’s razor, Domingos (Data Min. Knowl. Discov. 3:409–425,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2011-03, Vol.82 (3), p.475-481
Hauptverfasser: ZAHALKA, Jan, ZELEZNY, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A widely persisting interpretation of Occam’s razor is that given two classifiers with the same training error, the simpler classifier is more likely to generalize better. Within a long-lasting debate in the machine learning community over Occam’s razor, Domingos (Data Min. Knowl. Discov. 3:409–425, 1999 ) rejects this interpretation and proposes that model complexity is only a confounding factor usually correlated with the number of models from which the learner selects. It is thus hypothesized that the risk of overfitting (poor generalization) follows only from the number of model tests rather than the complexity of the selected model. We test this hypothesis on 30 UCI data sets using polynomial classification models. The results confirm Domingos’ hypothesis on the 0.05 significance level and thus refutes the above interpretation of Occam’s razor. Our experiments however also illustrate that decoupling the two factors (model complexity and number of model tests) is problematic.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-010-5227-2