Finite Groups with Some Pronormal Subgroups

A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2011-04, Vol.27 (4), p.715-724
Hauptverfasser: Shen, Zhen Cai, Shi, Wu Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-groups (non-PRN-group all of whose proper subgroups are PRN-groups). At the end of the paper, we also classify the finite group G, all of whose second maximal subgroups are PRN-groups.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-011-9310-9