Finite Groups with Some Pronormal Subgroups
A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-gro...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2011-04, Vol.27 (4), p.715-724 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subgroup H of finite group G is called pronormal in G if for every element x of G, H is conjugate to Hx in (H, Hx). A finite group G is called PRN-group if every cyclic subgroup of G of prime order or order 4 is pronormal in G. In this paper, we find all PRN-groups and classify minimal non-PRN-groups (non-PRN-group all of whose proper subgroups are PRN-groups). At the end of the paper, we also classify the finite group G, all of whose second maximal subgroups are PRN-groups. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-011-9310-9 |