Broad-Band Fourier Transform Quadrupole Ion Trap Mass Spectrometry
Broad-band nondestructive ion detection is achieved in a quadrupole ion trap mass spectrometer by impulsive excitation of a collection of trapped ions of different masses and recording of ion image currents induced on a small detector electrode embedded in but isolated from the adjacent end cap elec...
Gespeichert in:
Veröffentlicht in: | Analytical Chemistry (Washington) 1996-10, Vol.68 (19), p.3314-3320 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Broad-band nondestructive ion detection is achieved in a quadrupole ion trap mass spectrometer by impulsive excitation of a collection of trapped ions of different masses and recording of ion image currents induced on a small detector electrode embedded in but isolated from the adjacent end cap electrode. The image currents are directly measured using a simple differential preamplifier, filter, and amplifier combination and then Fourier analyzed to obtain broad-band frequency domain spectra characteristic of the sample ions. The use of the detector electrode provides a significant reduction in capacitive coupling with the ring electrode. This minimizes coupling of the rf drive signal, which can saturate the front-end stage of the detection circuit and prevent measurement of the relatively weaker ion image currents. Although impulsive excitation is preferred due to its broad-band characteristics and simplicity of use, results are also given for narrow-band ac and broad-band SWIFT (stored wave-form inverse Fourier transform) excitation. Data using argon, acetophenone, and n-butylbenzene show that a resolution of better than 1000 is obtained with a detection bandwidth of 400 kHz. An advantage of nondestructive ion detection is the ability to measure a single-ion population multiple times. This is demonstrated using argon as the sample gas with an average remeasurement efficiency of >90%. Tandem mass spectrometry experiments using a population of acetophenone ions are also shown. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac960577s |