Tropical Cyclone Intensity Change before U.S. Gulf Coast Landfall

Tropical cyclone intensity change remains a forecasting challenge with important implications for such vulnerable areas as the U.S. coast along the Gulf of Mexico. Analysis of 1979–2008 Gulf tropical cyclones during their final two days before U.S. landfall identifies patterns of behavior that are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2010-10, Vol.25 (5), p.1380-1396
Hauptverfasser: RAPPAPORT, Edward N, FRANKLIN, James L, SCHUMACHER, Andrea B, DEMARIA, Mark, SHAY, Lynn K, GIBNEY, Ethan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tropical cyclone intensity change remains a forecasting challenge with important implications for such vulnerable areas as the U.S. coast along the Gulf of Mexico. Analysis of 1979–2008 Gulf tropical cyclones during their final two days before U.S. landfall identifies patterns of behavior that are of interest to operational forecasters and researchers. Tropical storms and depressions strengthened on average by about 7 kt for every 12 h over the Gulf, except for little change during their final 12 h before landfall. Hurricanes underwent a different systematic evolution. In the net, category 1–2 hurricanes strengthened, while category 3–5 hurricanes weakened such that tropical cyclones approach the threshold of major hurricane status by U.S. landfall. This behavior can be partially explained by consideration of the maximum potential intensity modified by the environmental vertical wind shear and hurricane-induced sea surface temperature reduction near the storm center associated with relatively low oceanic heat content levels. Linear least squares regression equations based on initial intensity and time to landfall explain at least half the variance of the hurricane intensity change. Applied retrospectively, these simple equations yield relatively small forecast errors and biases for hurricanes. Characteristics of most of the significant outliers are explained and found to be identifiable a priori for hurricanes, suggesting that forecasters can adjust their forecast procedures accordingly.
ISSN:0882-8156
1520-0434
DOI:10.1175/2010waf2222369.1